当前位置: 首页>>代码示例>>Python>>正文


Python EcGroup.generator方法代码示例

本文整理汇总了Python中petlib.ec.EcGroup.generator方法的典型用法代码示例。如果您正苦于以下问题:Python EcGroup.generator方法的具体用法?Python EcGroup.generator怎么用?Python EcGroup.generator使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在petlib.ec.EcGroup的用法示例。


在下文中一共展示了EcGroup.generator方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: Ct_dec_unit_test

# 需要导入模块: from petlib.ec import EcGroup [as 别名]
# 或者: from petlib.ec.EcGroup import generator [as 别名]
def Ct_dec_unit_test():
    try:    
        G = EcGroup()
        x_1 = G.order().random()
        y_1 = x_1 * G.generator()
    
        x_2 = G.order().random()
        y_2 = x_2 * G.generator()

        x_3 = G.order().random()
        y_3 = x_3 * G.generator()
    
        #
        E1 = Ct.enc(y_1+y_2, 2)
        E = copy(E1)
        E.b = E1.partial_dec(x_1)
        
        
        #
        E3 = Ct.enc(y_1, 22)
        E4 = Ct.enc(y_2+y_3, E3)
        E5 = copy(E4)
        E5.b = E4.partial_dec(x_1)
        
        return ((E.dec(x_2) == 2) and (E1.dec(x_1+x_2) == 2) and (E5.dec(x_2+x_3)==22))
        
    except Exception:
        return False
开发者ID:str4d,项目名称:Crux,代码行数:30,代码来源:Classes.py

示例2: setup

# 需要导入模块: from petlib.ec import EcGroup [as 别名]
# 或者: from petlib.ec.EcGroup import generator [as 别名]
def setup():
    ''' Setup the parameters of the mix crypto-system '''
    G = EcGroup()
    o = G.order()
    g = G.generator()
    o_bytes = int(math.ceil(math.log(float(int(o))) / math.log(256)))
    return G, o, g, o_bytes
开发者ID:gdanezis,项目名称:loopix,代码行数:9,代码来源:format.py

示例3: mix_client_n_hop

# 需要导入模块: from petlib.ec import EcGroup [as 别名]
# 或者: from petlib.ec.EcGroup import generator [as 别名]
def mix_client_n_hop(public_keys, address, message, use_blinding_factor=False):
    """
    Encode a message to travel through a sequence of mixes with a sequence public keys. 
    The maximum size of the final address and the message are 256 bytes and 1000 bytes respectively.
    Returns an 'NHopMixMessage' with four parts: a public key, a list of hmacs (20 bytes each),
    an address ciphertext (256 + 2 bytes) and a message ciphertext (1002 bytes). 

    The implementation of the blinding factor is optional and therefore only activated 
    in the bonus tests. It can be ignored for the standard task.
    If you implement the bonus task make sure to only activate it if use_blinding_factor is True.
    """
    G = EcGroup()
    # assert G.check_point(public_key)
    assert isinstance(address, bytes) and len(address) <= 256
    assert isinstance(message, bytes) and len(message) <= 1000

    # Encode the address and message
    # use those encoded values as the payload you encrypt!
    address_plaintext = pack("!H256s", len(address), address)
    message_plaintext = pack("!H1000s", len(message), message)

    ## Generate a fresh public key
    private_key = G.order().random()
    client_public_key  = private_key * G.generator()

    #TODO ADD CODE HERE

    return NHopMixMessage(client_public_key, hmacs, address_cipher, message_cipher)
开发者ID:PETS-TUWien,项目名称:pets_ws2015,代码行数:30,代码来源:Lab02Code.py

示例4: test_broad

# 需要导入模块: from petlib.ec import EcGroup [as 别名]
# 或者: from petlib.ec.EcGroup import generator [as 别名]
def test_broad():
    G = EcGroup()
    g = G.generator()
    x = G.order().random()

    a, puba = pair(G)
    b, pubb = pair(G)
    c, pubc = pair(G)
    a2, puba2 = pair(G)
    b2, pubb2 = pair(G)
    c2, pubc2 = pair(G)

    pki = {"a":(puba,puba2) , "b":(pubb, pubb2), "c":(pubc, pubc2)}
    client = KulanClient(G, "me", x, pki)

    msgs = client.broadcast_encrypt(b"Hello!")

    pki2 = {"me": x * g, "b":(pubb, pubb2), "c":(pubc, pubc2)}
    dec_client = KulanClient(G, "a", a, pki2)

    dec_client.priv_enc = a2
    dec_client.pub_enc = puba2

    namex, keysx = dec_client.broadcast_decrypt(msgs)
    assert namex == "me"
    # print msgs
开发者ID:lucamelis,项目名称:petlib,代码行数:28,代码来源:kulan.py

示例5: test_Point_doubling

# 需要导入模块: from petlib.ec import EcGroup [as 别名]
# 或者: from petlib.ec.EcGroup import generator [as 别名]
def test_Point_doubling():
    """
    Test whether the EC point doubling is correct.
    """

    from pytest import raises
    from petlib.ec import EcGroup, EcPt
    G = EcGroup(713) # NIST curve
    d = G.parameters()
    a, b, p = d["a"], d["b"], d["p"]
    g = G.generator()
    gx0, gy0 = g.get_affine()

    gx2, gy2 = (2*g).get_affine()

    from Lab01Code import is_point_on_curve
    from Lab01Code import point_double

    x2, y2 = point_double(a, b, p, gx0, gy0)
    assert is_point_on_curve(a, b, p, x2, y2)
    assert x2 == gx2 and y2 == gy2

    x2, y2 = point_double(a, b, p, None, None)
    assert is_point_on_curve(a, b, p, x2, y2)
    assert x2 == None and y2 == None
开发者ID:alexrashed,项目名称:PET-Exercises,代码行数:27,代码来源:Lab01Tests.py

示例6: mix_client_one_hop

# 需要导入模块: from petlib.ec import EcGroup [as 别名]
# 或者: from petlib.ec.EcGroup import generator [as 别名]
def mix_client_one_hop(public_key, address, message):
    """
    Encode a message to travel through a single mix with a set public key. 
    The maximum size of the final address and the message are 256 bytes and 1000 bytes respectively.
    Returns an 'OneHopMixMessage' with four parts: a public key, an hmac (20 bytes),
    an address ciphertext (256 + 2 bytes) and a message ciphertext (1002 bytes). 
    """

    G = EcGroup()
    assert G.check_point(public_key)
    assert isinstance(address, bytes) and len(address) <= 256
    assert isinstance(message, bytes) and len(message) <= 1000

    # Encode the address and message
    # Use those as the payload for encryption
    address_plaintext = pack("!H256s", len(address), address)
    message_plaintext = pack("!H1000s", len(message), message)

    ## Generate a fresh public key
    private_key = G.order().random()
    client_public_key  = private_key * G.generator()

    #TODO ADD CODE HERE
    
    return OneHopMixMessage(client_public_key, expected_mac, address_cipher, message_cipher)
开发者ID:PETS-TUWien,项目名称:pets_ws2015,代码行数:27,代码来源:Lab02Code.py

示例7: test_Alice_encode_3_hop

# 需要导入模块: from petlib.ec import EcGroup [as 别名]
# 或者: from petlib.ec.EcGroup import generator [as 别名]
def test_Alice_encode_3_hop():
    """
    Test sending a multi-hop message through 1-hop
    """

    from os import urandom

    G = EcGroup()
    g = G.generator()
    o = G.order()

    private_keys = [o.random() for _ in range(3)]
    public_keys  = [pk * g for pk in private_keys]

    address = b"Alice"
    message = b"Dear Alice,\nHello!\nBob"

    m1 = mix_client_n_hop(public_keys, address, message)
    out = mix_server_n_hop(private_keys[0], [m1])
    out = mix_server_n_hop(private_keys[1], out)
    out = mix_server_n_hop(private_keys[2], out, final=True)

    assert len(out) == 1
    assert out[0][0] == address
    assert out[0][1] == message
开发者ID:Gerard1066,项目名称:PET-Exercises,代码行数:27,代码来源:Lab02Tests.py

示例8: test_steady

# 需要导入模块: from petlib.ec import EcGroup [as 别名]
# 或者: from petlib.ec.EcGroup import generator [as 别名]
def test_steady():
    G = EcGroup()
    g = G.generator()
    x = G.order().random()
    pki = {"me":(x * g, x * g)}
    client = KulanClient(G, "me", x, pki)

    ## Mock some keys
    client.Ks += [bytes(urandom(16))]

    # Decrypt a small message
    ciphertext = client.steady_encrypt(b"Hello World!")
    client.steady_decrypt(ciphertext)

    # Decrypt a big message
    ciphertext = client.steady_encrypt(b"Hello World!"*10000)
    client.steady_decrypt(ciphertext)

    # decrypt an empty string
    ciphertext = client.steady_encrypt(b"")
    client.steady_decrypt(ciphertext)

    # Time it
    import time
    t0 = time.clock()
    for _ in range(1000):
        ciphertext = client.steady_encrypt(b"Hello World!"*10)
        client.steady_decrypt(ciphertext)
    t = time.clock() - t0

    print()
    print(" - %2.2f operations / sec" % (1.0 / (t / 1000)))
开发者ID:lucamelis,项目名称:petlib,代码行数:34,代码来源:kulan.py

示例9: execute_Alice_encode_hop

# 需要导入模块: from petlib.ec import EcGroup [as 别名]
# 或者: from petlib.ec.EcGroup import generator [as 别名]
def execute_Alice_encode_hop(hops, use_blinding_factor=False):
    """
    Test sending a multi-hop message through 1-hop
    """

    from os import urandom

    G = EcGroup()
    g = G.generator()
    o = G.order()

    private_keys = [o.random() for _ in range(hops)]
    public_keys = [pk * g for pk in private_keys]

    address = b"Alice"
    message = b"Dear Alice,\nHello!\nBob"

    # Execute the encoding with the client implementation
    m1 = mix_client_n_hop(public_keys, address, message, use_blinding_factor)

    # Walk through the hops with the server implementation
    out = [m1]
    for hop in range(0, hops - 1):
        out = mix_server_n_hop(private_keys[hop], out, use_blinding_factor)
    out = mix_server_n_hop(private_keys[hops - 1], out, use_blinding_factor, final=True)

    # Check the result
    assert len(out) == 1
    assert out[0][0] == address
    assert out[0][1] == message
开发者ID:daklaus,项目名称:pets_ws2015,代码行数:32,代码来源:Lab02Tests.py

示例10: ecdsa_key_gen

# 需要导入模块: from petlib.ec import EcGroup [as 别名]
# 或者: from petlib.ec.EcGroup import generator [as 别名]
def ecdsa_key_gen():
    """ Returns an EC group, a random private key for signing 
        and the corresponding public key for verification"""
    G = EcGroup()
    priv_sign = G.order().random()
    pub_verify = priv_sign * G.generator()
    return (G, priv_sign, pub_verify)
开发者ID:marcincuber,项目名称:EnchancingTechnologies,代码行数:9,代码来源:Lab01Code.py

示例11: test_Pedersen_Shorthand

# 需要导入模块: from petlib.ec import EcGroup [as 别名]
# 或者: from petlib.ec.EcGroup import generator [as 别名]
def test_Pedersen_Shorthand():

    # Define an EC group
    G = EcGroup(713)
    order = G.order()

    ## Proof definitions
    zk = ZKProof(G)
    zk.g, zk.h = ConstGen, ConstGen
    zk.x, zk.o = Sec, Sec
    zk.Cxo = Gen
    zk.add_proof(zk.Cxo, zk.x*zk.g + zk.o*zk.h)

    print(zk.render_proof_statement())

    # A concrete Pedersen commitment
    ec_g = G.generator()
    ec_h = order.random() * ec_g
    bn_x = order.random()
    bn_o = order.random()
    ec_Cxo = bn_x * ec_g + bn_o * ec_h

    env = ZKEnv(zk)
    env.g, env.h = ec_g, ec_h 
    env.Cxo = ec_Cxo
    env.x = bn_x 
    env.o = bn_o

    sig = zk.build_proof(env.get())

    # Execute the verification
    env = ZKEnv(zk)
    env.g, env.h = ec_g, ec_h 

    assert zk.verify_proof(env.get(), sig)
开发者ID:gdanezis,项目名称:petlib,代码行数:37,代码来源:genzkp.py

示例12: mix_client_n_hop

# 需要导入模块: from petlib.ec import EcGroup [as 别名]
# 或者: from petlib.ec.EcGroup import generator [as 别名]
def mix_client_n_hop(public_keys, address, message):
    """
    Encode a message to travel through a sequence of mixes with a sequence public keys. 
    The maximum size of the final address and the message are 256 bytes and 1000 bytes respectively.
    Returns an 'NHopMixMessage' with four parts: a public key, a list of hmacs (20 bytes each),
    an address ciphertext (256 + 2 bytes) and a message ciphertext (1002 bytes). 

    """
    G = EcGroup()
    # assert G.check_point(public_key)
    assert isinstance(address, bytes) and len(address) <= 256
    assert isinstance(message, bytes) and len(message) <= 1000

    # Encode the address and message
    # use those encoded values as the payload you encrypt!
    address_plaintext = pack("!H256s", len(address), address)
    message_plaintext = pack("!H1000s", len(message), message)

    ## Generate a fresh public key
    private_key = G.order().random()
    client_public_key  = private_key * G.generator()

    ## ADD CODE HERE

    return NHopMixMessage(client_public_key, hmacs, address_cipher, message_cipher)
开发者ID:Gerard1066,项目名称:PET-Exercises,代码行数:27,代码来源:Lab02Code.py

示例13: test_Pedersen_Env

# 需要导入模块: from petlib.ec import EcGroup [as 别名]
# 或者: from petlib.ec.EcGroup import generator [as 别名]
def test_Pedersen_Env():

    # Define an EC group
    G = EcGroup(713)
    order = G.order()

    ## Proof definitions
    zk = ZKProof(G)
    g, h = zk.get(ConstGen, ["g", "h"])
    x, o = zk.get(Sec, ["x", "o"])
    Cxo = zk.get(Gen, "Cxo")
    zk.add_proof(Cxo, x*g + o*h)

    # A concrete Pedersen commitment
    ec_g = G.generator()
    ec_h = order.random() * ec_g
    bn_x = order.random()
    bn_o = order.random()
    ec_Cxo = bn_x * ec_g + bn_o * ec_h

    env = ZKEnv(zk)
    env.g, env.h = ec_g, ec_h 
    env.Cxo = ec_Cxo
    env.x = bn_x 
    env.o = bn_o

    sig = zk.build_proof(env.get())

    # Execute the verification
    env = ZKEnv(zk)
    env.g, env.h = ec_g, ec_h 

    assert zk.verify_proof(env.get(), sig)
开发者ID:lucamelis,项目名称:petlib,代码行数:35,代码来源:genzkp.py

示例14: _make_table

# 需要导入模块: from petlib.ec import EcGroup [as 别名]
# 或者: from petlib.ec.EcGroup import generator [as 别名]
def _make_table(trunc_limit, start=conf.LOWER_LIMIT, end=conf.UPPER_LIMIT):
    G = EcGroup(nid=713)
    g = G.generator()
    o = G.order()

    i_table = {}
    n_table = {}
    ix = start * g
	
    print "Generating db with truc: " + str(trunc_limit)
    #trunc_limit = conf.TRUNC_LIMIT
	
    for i in range(start, end):
        #i_table[str(ix)] = str(i) #Uncompressed
        #Compression trick
        trunc_ix = str(ix)[:trunc_limit]
        #print ix
        #print trunc_ix
        if trunc_ix in i_table:
            i_table[trunc_ix] = i_table[trunc_ix] + "," + str(i)
        else:
            i_table[trunc_ix] = str(i)
        
        
        n_table[str((o + i) % o)] = str(ix)
        ix = ix + g
        #print type(ix)
        #print type(ix.export())
        
    print "size: " + str(len(i_table))
    return i_table, n_table
开发者ID:mavroudisv,项目名称:Crux,代码行数:33,代码来源:generate_dbs.py

示例15: test_Decrypt

# 需要导入模块: from petlib.ec import EcGroup [as 别名]
# 或者: from petlib.ec.EcGroup import generator [as 别名]
def test_Decrypt():
    G = EcGroup()
    x = G.order().random()
    y = x * G.generator()
    import random

    for _ in range(100):
        i = random.randint(-1000, 999)
        E = Ct.enc(y, i)
        assert E.dec(x) == i
开发者ID:gdanezis,项目名称:petlib,代码行数:12,代码来源:tormedian.py


注:本文中的petlib.ec.EcGroup.generator方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。