本文整理汇总了Python中parsimony.functions.CombinedFunction.add_prox方法的典型用法代码示例。如果您正苦于以下问题:Python CombinedFunction.add_prox方法的具体用法?Python CombinedFunction.add_prox怎么用?Python CombinedFunction.add_prox使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类parsimony.functions.CombinedFunction
的用法示例。
在下文中一共展示了CombinedFunction.add_prox方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_nonsmooth
# 需要导入模块: from parsimony.functions import CombinedFunction [as 别名]
# 或者: from parsimony.functions.CombinedFunction import add_prox [as 别名]
def test_nonsmooth(self):
import numpy as np
import parsimony.utils.consts as consts
from parsimony.functions import CombinedFunction
import parsimony.algorithms.proximal as proximal
import parsimony.functions.losses as losses
import parsimony.functions.penalties as penalties
import parsimony.functions.nesterov as nesterov
import parsimony.utils.start_vectors as start_vectors
import parsimony.datasets.simulate.l1_l2_tv as l1_l2_tv
start_vector = start_vectors.RandomStartVector(normalise=True)
np.random.seed(42)
n, p = 75, 100
penalty_start = 0
alpha = 0.9
Sigma = alpha * np.eye(p, p) \
+ (1.0 - alpha) * np.random.randn(p, p)
mean = np.zeros(p)
M = np.random.multivariate_normal(mean, Sigma, n)
e = np.random.randn(n, 1)
beta = start_vector.get_vector(p)
beta[np.abs(beta) < 0.1] = 0.0
l = 0.618
k = 0.0
g = 0.0
A = np.eye(p)
A = [A, A, A]
snr = 100.0
X, y, beta_star = l1_l2_tv.load(l, k, g, beta, M, e, A, snr=snr)
function = CombinedFunction()
function.add_function(losses.LinearRegression(X, y,
# penalty_start=penalty_start,
mean=False))
# A = nesterov.l1.A_from_variables(p, penalty_start=penalty_start)
# function.add_penalty(nesterov.l1.L1(l, A=A, mu=mu_min,
# penalty_start=penalty_start))
function.add_prox(penalties.L1(l, penalty_start=penalty_start))
fista = proximal.FISTA(eps=consts.TOLERANCE, max_iter=7800)
beta = fista.run(function, beta)
assert np.linalg.norm(beta - beta_star) < 5e-2
示例2: test_smooth_2D_l1
# 需要导入模块: from parsimony.functions import CombinedFunction [as 别名]
# 或者: from parsimony.functions.CombinedFunction import add_prox [as 别名]
def test_smooth_2D_l1(self):
from parsimony.functions import CombinedFunction
import parsimony.functions as functions
import parsimony.functions.nesterov.grouptv as grouptv
import parsimony.datasets.simulate.l1_l2_grouptvmu as l1_l2_grouptvmu
import parsimony.utils.weights as weights
np.random.seed(1337)
n, p = 10, 18
shape = (1, 3, 6)
l = 0.618
k = 0.0
g = 1.618
start_vector = weights.ZerosWeights()
beta = start_vector.get_weights(p)
rects = [[(0, 1), (0, 3)], [(1, 2), (3, 6)]]
beta = np.reshape(beta, shape[1:])
beta[0:2, 0:4] = 1.0
beta[1:3, 3:6] = 2.0
beta[1, 3] = 1.5
beta = np.reshape(beta, (p, 1))
alpha = 1.0
Sigma = alpha * np.eye(p, p) \
+ (1.0 - alpha) * np.random.randn(p, p)
mean = np.zeros(p)
M = np.random.multivariate_normal(mean, Sigma, n)
e = np.random.randn(n, 1)
snr = 100.0
A = grouptv.linear_operator_from_rects(rects, shape)
mu_min = 5e-8
X, y, beta_star = l1_l2_grouptvmu.load(l=l, k=k, g=g, beta=beta,
M=M, e=e, A=A, mu=mu_min,
snr=snr)
eps = 1e-5
max_iter = 10000
beta_start = start_vector.get_weights(p)
mus = [5e-2, 5e-4, 5e-6, 5e-8]
fista = FISTA(eps=eps, max_iter=max_iter / len(mus))
beta_parsimony = beta_start
for mu in mus:
function = CombinedFunction()
function.add_loss(functions.losses.LinearRegression(X, y,
mean=False))
function.add_penalty(grouptv.GroupTotalVariation(l=g,
A=A, mu=mu,
penalty_start=0))
function.add_prox(functions.penalties.L1(l=l, penalty_start=0))
beta_parsimony = fista.run(function, beta_parsimony)
berr = np.linalg.norm(beta_parsimony - beta_star)
# print "berr:", berr
assert berr < 5e-2
f_parsimony = function.f(beta_parsimony)
f_star = function.f(beta_star)
ferr = abs(f_parsimony - f_star)
# print "ferr:", ferr
assert ferr < 5e-5
示例3: test_combo_overlapping_nonsmooth
# 需要导入模块: from parsimony.functions import CombinedFunction [as 别名]
# 或者: from parsimony.functions.CombinedFunction import add_prox [as 别名]
def test_combo_overlapping_nonsmooth(self):
import numpy as np
from parsimony.functions import CombinedFunction
import parsimony.algorithms.proximal as proximal
import parsimony.functions as functions
import parsimony.functions.nesterov.gl as gl
import parsimony.datasets.simulate.l1_l2_gl as l1_l2_gl
import parsimony.utils.start_vectors as start_vectors
np.random.seed(42)
# Note that p must be even!
n, p = 25, 30
groups = [range(0, 2 * p / 3), range(p / 3, p)]
weights = [1.5, 0.5]
A = gl.A_from_groups(p, groups=groups, weights=weights)
l = 0.618
k = 1.0 - l
g = 2.718
start_vector = start_vectors.RandomStartVector(normalise=True)
beta = start_vector.get_vector(p)
alpha = 1.0
Sigma = alpha * np.eye(p, p) \
+ (1.0 - alpha) * np.random.randn(p, p)
mean = np.zeros(p)
M = np.random.multivariate_normal(mean, Sigma, n)
e = np.random.randn(n, 1)
snr = 100.0
X, y, beta_star = l1_l2_gl.load(l, k, g, beta, M, e, A, snr=snr)
eps = 1e-8
max_iter = 10000
beta_start = start_vector.get_vector(p)
mus = [5e-0, 5e-2, 5e-4, 5e-6, 5e-8]
fista = proximal.FISTA(eps=eps, max_iter=max_iter / len(mus))
beta_parsimony = beta_start
for mu in mus:
# function = functions.LinearRegressionL1L2GL(X, y, l, k, g,
# A=A, mu=mu,
# penalty_start=0)
function = CombinedFunction()
function.add_function(functions.losses.LinearRegression(X, y,
mean=False))
function.add_penalty(functions.penalties.L2Squared(l=k))
function.add_penalty(gl.GroupLassoOverlap(l=g, A=A, mu=mu,
penalty_start=0))
function.add_prox(functions.penalties.L1(l=l))
beta_parsimony = fista.run(function, beta_parsimony)
berr = np.linalg.norm(beta_parsimony - beta_star)
# print berr
assert berr < 5e-3
f_parsimony = function.f(beta_parsimony)
f_star = function.f(beta_star)
# print abs(f_parsimony - f_star)
assert abs(f_parsimony - f_star) < 5e-6
示例4: test_smoothed
# 需要导入模块: from parsimony.functions import CombinedFunction [as 别名]
# 或者: from parsimony.functions.CombinedFunction import add_prox [as 别名]
def test_smoothed(self):
import numpy as np
import scipy.sparse
from parsimony.functions import CombinedFunction
import parsimony.algorithms.proximal as proximal
import parsimony.functions.losses as losses
import parsimony.functions.nesterov as nesterov
import parsimony.utils.weights as weights
import parsimony.datasets.simulate.l1_l2_tv as l1_l2_tv
start_vector = weights.RandomUniformWeights(normalise=True)
np.random.seed(42)
n, p = 75, 100
penalty_start = 0
alpha = 0.9
V = np.random.randn(p, p)
Sigma = alpha * np.eye(p, p) \
+ (1.0 - alpha) * np.dot(V.T, V)
mean = np.zeros(p)
M = np.random.multivariate_normal(mean, Sigma, n)
e = np.random.randn(n, 1)
beta = start_vector.get_weights(p)
beta[np.abs(beta) < 0.1] = 0.0
l = 0.618
k = 0.0
g = 0.0
mu_min = 0.001 # consts.TOLERANCE
A = scipy.sparse.eye(p)
# A = np.eye(p)
A = [A, A, A]
snr = 100.0
X, y, beta_star = l1_l2_tv.load(l, k, g, beta, M, e, A, snr=snr)
function = CombinedFunction()
function.add_loss(losses.LinearRegression(X, y, mean=False))
A = nesterov.l1.linear_operator_from_variables(p,
penalty_start=penalty_start)
function.add_penalty(nesterov.l1.L1(l, A=A, mu=mu_min,
penalty_start=penalty_start))
# function.add_prox(penalties.L1(l, penalty_start=penalty_start))
fista = proximal.FISTA(eps=mu_min, max_iter=23500)
beta = fista.run(function, beta)
berr = np.linalg.norm(beta - beta_star)
# print "berr:", berr
# assert berr < 5
assert_less(berr, 5.0, "The found regression vector is not correct.")
# Test proximal operator
function = CombinedFunction()
function.add_loss(losses.LinearRegression(X, y, mean=False))
A = nesterov.l1.linear_operator_from_variables(p,
penalty_start=penalty_start)
function.add_prox(nesterov.l1.L1(l, A=A, mu=mu_min,
penalty_start=penalty_start))
fista = proximal.FISTA(eps=mu_min, max_iter=20000)
beta = fista.run(function, beta)
berr = np.linalg.norm(beta - beta_star)
# print "berr:", berr
# assert berr < 0.1
assert_less(berr, 0.1, "The found regression vector is not correct.")