本文整理汇总了Python中parcels.Grid.from_nemo方法的典型用法代码示例。如果您正苦于以下问题:Python Grid.from_nemo方法的具体用法?Python Grid.from_nemo怎么用?Python Grid.from_nemo使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类parcels.Grid
的用法示例。
在下文中一共展示了Grid.from_nemo方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_delay_start_example
# 需要导入模块: from parcels import Grid [as 别名]
# 或者: from parcels.Grid import from_nemo [as 别名]
def test_delay_start_example(mode, npart=10, show_movie=False):
"""Example script that shows how to 'delay' the start of particle advection.
This is useful for example when particles need to be started at different times
In this example, we use pset.add statements to add one particle every hour
in the peninsula grid. Note that the title in the movie may not show correct time"""
grid = Grid.from_nemo('examples/Peninsula_data/peninsula', extra_vars={'P': 'P'})
# Initialise particles as in the Peninsula example
x = 3. * (1. / 1.852 / 60) # 3 km offset from boundary
y = (grid.U.lat[0] + x, grid.U.lat[-1] - x) # latitude range, including offsets
lat = np.linspace(y[0], y[1], npart, dtype=np.float32)
pset = grid.ParticleSet(0, lon=[], lat=[], pclass=ptype[mode])
delaytime = delta(hours=1) # delay time between particle releases
for t in range(npart):
pset.add(ptype[mode](lon=x, lat=lat[t], grid=grid))
pset.execute(AdvectionRK4, runtime=delaytime, dt=delta(minutes=5),
interval=delta(hours=1), show_movie=show_movie)
# Note that time on the movie is not parsed correctly
pset.execute(AdvectionRK4, runtime=delta(hours=24)-npart*delaytime,
dt=delta(minutes=5), interval=delta(hours=1), show_movie=show_movie)
londist = np.array([(p.lon - x) for p in pset])
assert(londist > 0.1).all()
示例2: test_peninsula_file
# 需要导入模块: from parcels import Grid [as 别名]
# 或者: from parcels.Grid import from_nemo [as 别名]
def test_peninsula_file(gridfile, mode):
"""Open grid files and execute"""
grid = Grid.from_nemo(gridfile, extra_vars={'P': 'P'})
pset = pensinsula_example(grid, 100, mode=mode, degree=1)
# Test advection accuracy by comparing streamline values
err_adv = np.array([abs(p.p_start - p.p) for p in pset])
assert(err_adv <= 1.e-3).all()
# Test grid sampling accuracy by comparing kernel against grid sampling
err_smpl = np.array([abs(p.p - pset.grid.P[0., p.lon, p.lat]) for p in pset])
assert(err_smpl <= 1.e-3).all()
示例3: test_grid_from_nemo
# 需要导入模块: from parcels import Grid [as 别名]
# 或者: from parcels.Grid import from_nemo [as 别名]
def test_grid_from_nemo(xdim, ydim, tmpdir, filename='test_nemo'):
""" Simple test for grid initialisation from NEMO file format. """
filepath = tmpdir.join(filename)
u, v, lon, lat, depth, time = generate_grid(xdim, ydim)
grid_out = Grid.from_data(u, lon, lat, v, lon, lat, depth, time)
grid_out.write(filepath)
grid = Grid.from_nemo(filepath)
u_t = np.transpose(u).reshape((lat.size, lon.size))
v_t = np.transpose(v).reshape((lat.size, lon.size))
assert len(grid.U.data.shape) == 3 # Will be 4 once we use depth
assert len(grid.V.data.shape) == 3
assert np.allclose(grid.U.data[0, :], u_t, rtol=1e-12)
assert np.allclose(grid.V.data[0, :], v_t, rtol=1e-12)
示例4: test_moving_eddies_file
# 需要导入模块: from parcels import Grid [as 别名]
# 或者: from parcels.Grid import from_nemo [as 别名]
def test_moving_eddies_file(gridfile, mode):
grid = Grid.from_nemo(gridfile, extra_vars={'P': 'P'})
pset = moving_eddies_example(grid, 2, mode=mode)
assert(pset[0].lon < 0.5 and 46.0 < pset[0].lat < 46.35)
assert(pset[1].lon < 0.5 and 49.4 < pset[1].lat < 49.8)
示例5: moving_eddies_grid
# 需要导入模块: from parcels import Grid [as 别名]
# 或者: from parcels.Grid import from_nemo [as 别名]
help='Number of particles to advect')
p.add_argument('-v', '--verbose', action='store_true', default=False,
help='Print particle information before and after execution')
p.add_argument('--profiling', action='store_true', default=False,
help='Print profiling information after run')
p.add_argument('-g', '--grid', type=int, nargs=2, default=None,
help='Generate grid file with given dimensions')
p.add_argument('-m', '--method', choices=('RK4', 'EE', 'RK45'), default='RK4',
help='Numerical method used for advection')
args = p.parse_args()
filename = 'examples/MovingEddies_data/moving_eddies'
# Generate grid files according to given dimensions
if args.grid is not None:
grid = moving_eddies_grid(args.grid[0], args.grid[1])
grid.write(filename)
# Open grid files
grid = Grid.from_nemo(filename, extra_vars={'P': 'P'})
if args.profiling:
from cProfile import runctx
from pstats import Stats
runctx("moving_eddies_example(grid, args.particles, mode=args.mode, \
verbose=args.verbose, method=method[args.method])",
globals(), locals(), "Profile.prof")
Stats("Profile.prof").strip_dirs().sort_stats("time").print_stats(10)
else:
moving_eddies_example(grid, args.particles, mode=args.mode,
verbose=args.verbose, method=method[args.method])
示例6: peninsula_grid
# 需要导入模块: from parcels import Grid [as 别名]
# 或者: from parcels.Grid import from_nemo [as 别名]
p.add_argument('-o', '--nooutput', action='store_true', default=False,
help='Suppress trajectory output')
p.add_argument('--profiling', action='store_true', default=False,
help='Print profiling information after run')
p.add_argument('-g', '--grid', type=int, nargs=2, default=None,
help='Generate grid file with given dimensions')
p.add_argument('-m', '--method', choices=('RK4', 'EE', 'RK45'), default='RK4',
help='Numerical method used for advection')
args = p.parse_args()
if args.grid is not None:
filename = 'peninsula'
grid = peninsula_grid(args.grid[0], args.grid[1])
grid.write(filename)
# Open grid file set
grid = Grid.from_nemo('peninsula', extra_vars={'P': 'P'})
if args.profiling:
from cProfile import runctx
from pstats import Stats
runctx("pensinsula_example(grid, args.particles, mode=args.mode,\
degree=args.degree, verbose=args.verbose,\
output=not args.nooutput, method=method[args.method])",
globals(), locals(), "Profile.prof")
Stats("Profile.prof").strip_dirs().sort_stats("time").print_stats(10)
else:
pensinsula_example(grid, args.particles, mode=args.mode,
degree=args.degree, verbose=args.verbose,
output=not args.nooutput, method=method[args.method])
示例7: stommel_grid
# 需要导入模块: from parcels import Grid [as 别名]
# 或者: from parcels.Grid import from_nemo [as 别名]
help='Number of particles to advect')
p.add_argument('-v', '--verbose', action='store_true', default=False,
help='Print particle information before and after execution')
p.add_argument('--profiling', action='store_true', default=False,
help='Print profiling information after run')
p.add_argument('-g', '--grid', type=int, nargs=2, default=None,
help='Generate grid file with given dimensions')
p.add_argument('-m', '--method', choices=('RK4', 'EE', 'RK45'), default='RK4',
help='Numerical method used for advection')
args = p.parse_args()
filename = 'stommel'
# Generate grid files according to given dimensions
if args.grid is not None:
grid = stommel_grid(args.grid[0], args.grid[1])
grid.write(filename)
# Open grid files
grid = Grid.from_nemo(filename)
if args.profiling:
from cProfile import runctx
from pstats import Stats
runctx("stommel_example(grid, args.particles, mode=args.mode, \
verbose=args.verbose)",
globals(), locals(), "Profile.prof")
Stats("Profile.prof").strip_dirs().sort_stats("time").print_stats(10)
else:
stommel_example(grid, args.particles, mode=args.mode,
verbose=args.verbose, method=method[args.method])