本文整理汇总了Python中parametering.Parameterization.Parameterization.get_edges方法的典型用法代码示例。如果您正苦于以下问题:Python Parameterization.get_edges方法的具体用法?Python Parameterization.get_edges怎么用?Python Parameterization.get_edges使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类parametering.Parameterization.Parameterization
的用法示例。
在下文中一共展示了Parameterization.get_edges方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: step08
# 需要导入模块: from parametering.Parameterization import Parameterization [as 别名]
# 或者: from parametering.Parameterization.Parameterization import get_edges [as 别名]
def step08(paramFile):
#util = ParameterUtil(parameter_file = 'data/formatado/arxiv/nowell_example_1994_1999.txt')
util = ParameterUtil(parameter_file = paramFile)
myparams = Parameterization(util.keyword_decay, util.lengthVertex, util.t0, util.t0_, util.t1, util.t1_, util.FeaturesChoiced, util.graph_file, util.trainnig_graph_file, util.test_graph_file, util.decay)
myparams.generating_Training_Graph()
myparams.generating_Test_Graph()
print "Trainning Period:", myparams.t0, " - ", myparams.t0_
print "Test Period:", myparams.t1, " - ", myparams.t1_
print "# Papers in Trainning: ", myparams.get_edges(myparams.trainnigGraph)
print "# Authors in Training: ", myparams.get_nodes(myparams.trainnigGraph)
print "# Papers in Test: ", myparams.get_edges(myparams.testGraph)
print "# Authors in Test", myparams.get_nodes(myparams.testGraph)
calc = Calculate(myparams, util.nodes_notlinked_file, util.calculated_file, util.ordered_file, util.maxmincalculated_file)
calc.reading_Max_min_file()
print "# pair of Authors with at least 3 articles Calculated: ", calc.qtyDataCalculated #FormatingDataSets.getTotalLineNumbers(FormatingDataSets.get_abs_file_path(util.calculated_file))
topRank = Analyse.getTopRank(util.analysed_file+ '.random.analised.txt')
print "# pair of Authors with at least 3 articles that is connected in Test Graph in a random way: ", topRank
print "Max values found in calculations: ", str(calc.maxValueCalculated)
print "Min Values found in calculations: ", str(calc.minValueCalculated)
for pathFile in calc.getfilePathOrdered_separeted():
print "File Analised: ", pathFile + '.analised.txt'
number_connected = Analyse.getTopRankABSPathFiles(pathFile + '.analised.txt')
print "# pair of Authors that is connected in Test Graph: ", number_connected
print "%: ", Analyse.getLastInfosofResultsABSPathFiles(pathFile + '.analised.txt', topRank)
print "---------------------------------"
示例2: execution
# 需要导入模块: from parametering.Parameterization import Parameterization [as 别名]
# 或者: from parametering.Parameterization.Parameterization import get_edges [as 别名]
def execution(configFile):
#DEFINE THE FILE THAT WILL KEEP THE RESULT DATA
resultFile = open(FormatingDataSets.get_abs_file_path(configFile + 'T.EXPERIMENTO_ATUAL_CORE03.txt'), 'w')
resultFile.write("Inicio da operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.write("\n")
#READING THE CONFIG FILE
util = ParameterUtil(parameter_file = configFile)
#CREATING PARAMETRIZATION OBJECT WITH THE INFORMATIONS OF THE CONFIG FILE.
myparams = Parameterization(t0 = util.t0, t0_ = util.t0_, t1 = util.t1, t1_ = util.t1_, linear_combination=util.linear_combination,
filePathGraph = util.graph_file, filePathTrainingGraph = util.trainnig_graph_file, filePathTestGraph = util.test_graph_file, decay = util.decay, domain_decay = util.domain_decay, min_edges = util.min_edges, scoreChoiced = util.ScoresChoiced, weightsChoiced = util.WeightsChoiced, weightedScoresChoiced = util.WeightedScoresChoiced, FullGraph = None, result_random_file=util.result_random_file)
#GENERATING TRAINNING GRAPH BASED ON CONFIG FILE T0 AND T0_
myparams.generating_Training_Graph()
#GENERATING TEST GRAPH BASED ON CONcvb FIG FILE T1 AND T1_
myparams.generating_Test_Graph()
nodesSelection = NodeSelection(myparams.trainnigGraph, myparams.testGraph, util)
#GET THE AUTHORS THAT PUBLISH AT TRAINNING AND TEST
#A NUMBER OF PAPERS DEFINED AT MIN_EDGES IN CONFIG FILE
nodes = nodesSelection.get_NowellAuthorsCore()
#GET A PAIR OF AUTHORS THAT PUBLISH AT LEAST ONE ARTICLE AT TRAINNING AND TEST.
#DID NOT SEE ANY NEED
collaborations = nodesSelection.get_NowellColaboration()
#GET THE FIRST EDGES MADE BY THE COMBINATION OF NODES IN TRAINNING GRAPH
eOld = nodesSelection.get_NowellE(nodes,myparams.trainnigGraph)
#GET THE FIRST EDGES MADE BY THE COMBINATION OF NODES IN TEST GRAPH THAT DO NOT HAVE EDGES IN TRAINNING
eNew = nodesSelection.get_NowellE2(nodes, eOld, myparams.testGraph)
#GET THE NODES NOT LINKED OVER THE COMBINATION NODES.
nodesNotLinked = nodesSelection.get_PairsofNodesNotinEold(nodes)
#CREATING CALCULATION OBJECT
calc = CalculateInMemory(myparams,nodesNotLinked)
#CALCULATING THE SCORES.
resultsofCalculation = calc.executingCalculate()
#ORDERNING THE RESULTS RETURNING THE TOP N
orderingResults = calc.ordering(len(eNew), resultsofCalculation)
#SAVING THE ORDERED RESULTS.
calc.saving_orderedResult(util.ordered_file, orderingResults)
#ANALISE THE ORDERED RESULTS AND CHECK THE FUTURE.
ScoresResults = Analyse.AnalyseNodesWithScoresInFuture(orderingResults, myparams.testGraph)
#SAVING THE RESULTS.
for index in range(len(ScoresResults)):
Analyse.saving_analyseResult(ScoresResults[index], util.analysed_file + str(myparams.ScoresChoiced[index][0] ) + '.txt')
resultFile.write("TOTAL OF SUCESSS USING METRIC " + str(myparams.ScoresChoiced[index][0]) + " = " + str(Analyse.get_TotalSucess(ScoresResults[index]) ))
resultFile.write("\n")
resultFile.write("\n")
resultFile.write("Authors\tArticles\tCollaborations\tAuthors\tEold\tEnew\n")
resultFile.write( str(myparams.get_nodes(myparams.trainnigGraph))+ "\t" + str(myparams.get_edges(myparams.trainnigGraph)) + "\t\t" + str(len(collaborations)*2)+ "\t\t" + str(len(nodes)) + "\t" + str(len(eOld))+"\t" + str(len(eNew)))
resultFile.write("\n")
resultFile.write("Fim da Operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.close()
示例3: execution
# 需要导入模块: from parametering.Parameterization import Parameterization [as 别名]
# 或者: from parametering.Parameterization.Parameterization import get_edges [as 别名]
def execution(configFile):
#DEFINE THE FILE THAT WILL KEEP THE RESULT DATA
resultFile = open(FormatingDataSets.get_abs_file_path(configFile + 'core03.txt'), 'w')
resultFile.write("Inicio da operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.write("\n")
#READING THE CONFIG FILE
util = ParameterUtil(parameter_file = configFile)
#CREATING PARAMETRIZATION OBJECT WITH THE INFORMATIONS OF THE CONFIG FILE.
myparams = Parameterization(t0 = util.t0, t0_ = util.t0_, t1 = util.t1, t1_ = util.t1_, linear_combination=util.linear_combination,
filePathGraph = util.graph_file, filePathTrainingGraph = util.trainnig_graph_file, filePathTestGraph = util.test_graph_file, decay = util.decay, domain_decay = util.domain_decay, min_edges = util.min_edges, scoreChoiced = util.ScoresChoiced, weightsChoiced = util.WeightsChoiced, weightedScoresChoiced = util.WeightedScoresChoiced, FullGraph = None, result_random_file=util.result_random_file)
#GENERATING TRAINNING GRAPH BASED ON CONFIG FILE T0 AND T0_
myparams.generating_Training_Graph()
#GENERATING TEST GRAPH BASED ON CONcvb FIG FILE T1 AND T1_
myparams.generating_Test_Graph()
nodeSelection = NodeSelection(myparams.trainnigGraph, myparams.testGraph, util)
#if not os.path.exists(FormatingDataSets.get_abs_file_path(util.trainnig_graph_file + '.fuzzyinputy.txt')):
data = calculatingInputToFuzzy(myparams.trainnigGraph,nodeSelection.nodesNotLinked, myparams)
dataSorted = sorted(data, key=lambda value: value['result'], reverse=True)
topRank = len(nodeSelection.eNeW)
totalCalculated = len(dataSorted)
dataToAnalysed = []
if (topRank >= totalCalculated):
for item in range(totalCalculated):
dataToAnalysed.append({'no1': dataSorted[item]['no1'], 'no2': dataSorted[item]['no2'], 'result': dataSorted[item]['result'] })
else:
for item in range(topRank):
dataToAnalysed.append({'no1': dataSorted[item]['no1'], 'no2': dataSorted[item]['no2'], 'result': dataSorted[item]['result'] })
analise = AnalyseNodesInFuture(dataToAnalysed, myparams.testGraph)
resultFile.write( repr(get_TotalSucess(analise)) )
resultFile.write("\n")
#
resultFile.write("Authors\tArticles\tCollaborations\tAuthors\tEold\tEnew\n")
resultFile.write( str(myparams.get_nodes(myparams.trainnigGraph))+ "\t" + str(myparams.get_edges(myparams.trainnigGraph)) + "\t\t" + str(len(nodeSelection.get_NowellColaboration())*2)+ "\t\t" + str(len(nodeSelection.nodes)) + "\t" + str(len(nodeSelection.eOld))+"\t" + str(len(nodeSelection.eNeW)))
resultFile.write("\n")
resultFile.write("Fim da Operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.close()
示例4: execution
# 需要导入模块: from parametering.Parameterization import Parameterization [as 别名]
# 或者: from parametering.Parameterization.Parameterization import get_edges [as 别名]
def execution(configFile):
#DEFINE THE FILE THAT WILL KEEP THE RESULT DATA
resultFile = open(FormatingDataSets.get_abs_file_path(configFile + 'wTScore03_010304.txt'), 'w')
resultFile.write("Inicio da operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.write("\n")
#READING THE CONFIG FILE
util = ParameterUtil(parameter_file = configFile)
#CREATING PARAMETRIZATION OBJECT WITH THE INFORMATIONS OF THE CONFIG FILE.
myparams = Parameterization(t0 = util.t0, t0_ = util.t0_, t1 = util.t1, t1_ = util.t1_, linear_combination=util.linear_combination,
filePathGraph = util.graph_file, filePathTrainingGraph = util.trainnig_graph_file, filePathTestGraph = util.test_graph_file, decay = util.decay, domain_decay = util.domain_decay, min_edges = util.min_edges, scoreChoiced = util.ScoresChoiced, weightsChoiced = util.WeightsChoiced, weightedScoresChoiced = util.WeightedScoresChoiced, FullGraph = None, result_random_file=util.result_random_file)
#GENERATING TRAINNING GRAPH BASED ON CONFIG FILE T0 AND T0_
myparams.generating_Training_Graph()
#GENERATING TEST GRAPH BASED ON CONcvb FIG FILE T1 AND T1_
myparams.generating_Test_Graph()
nodeSelection = NodeSelection(myparams.trainnigGraph, myparams.testGraph, util)
db = None
if not os.path.exists(FormatingDataSets.get_abs_file_path(util.trainnig_graph_file + '.base.pdl')):
db = generateWeights(myparams.trainnigGraph, FormatingDataSets.get_abs_file_path(util.trainnig_graph_file + '.base.pdl') , myparams)
else:
db = reading_Database(FormatingDataSets.get_abs_file_path(util.trainnig_graph_file + '.base.pdl'))
calcDb = None
if not os.path.exists(FormatingDataSets.get_abs_file_path(util.calculated_file + '.base.pdl')):
calcDb = calculatingWeights(myparams.trainnigGraph, nodeSelection.nodesNotLinked, db, FormatingDataSets.get_abs_file_path(util.calculated_file) + '.base.pdl')
else:
calcDb = reading_Database(FormatingDataSets.get_abs_file_path(util.calculated_file + '.base.pdl'))
ordering = get_ordering(calcDb, len(nodeSelection.eNeW))
result = get_analyseNodesInFuture(ordering, myparams.testGraph)
resultFile.write(repr(result))
resultFile.write("\n")
#
resultFile.write("Authors\tArticles\tCollaborations\tAuthors\tEold\tEnew\n")
resultFile.write( str(myparams.get_nodes(myparams.trainnigGraph))+ "\t" + str(myparams.get_edges(myparams.trainnigGraph)) + "\t\t" + str(len(nodeSelection.get_NowellColaboration())*2)+ "\t\t" + str(len(nodeSelection.nodes)) + "\t" + str(len(nodeSelection.eOld))+"\t" + str(len(nodeSelection.eNeW)))
resultFile.write("\n")
resultFile.write("Fim da Operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.close()
示例5: execution
# 需要导入模块: from parametering.Parameterization import Parameterization [as 别名]
# 或者: from parametering.Parameterization.Parameterization import get_edges [as 别名]
def execution(configFile):
#DEFINE THE FILE THAT WILL KEEP THE RESULT DATA
resultFile = open(FormatingDataSets.get_abs_file_path(configFile + 'core03.txt'), 'w')
resultFile.write("Inicio da operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.write("\n")
#READING THE CONFIG FILE
util = ParameterUtil(parameter_file = configFile)
#CREATING PARAMETRIZATION OBJECT WITH THE INFORMATIONS OF THE CONFIG FILE.
myparams = Parameterization(t0 = util.t0, t0_ = util.t0_, t1 = util.t1, t1_ = util.t1_, linear_combination=util.linear_combination,
filePathGraph = util.graph_file, filePathTrainingGraph = util.trainnig_graph_file, filePathTestGraph = util.test_graph_file, decay = util.decay, domain_decay = util.domain_decay, min_edges = util.min_edges, scoreChoiced = util.ScoresChoiced, weightsChoiced = util.WeightsChoiced, weightedScoresChoiced = util.WeightedScoresChoiced, FullGraph = None, result_random_file=util.result_random_file)
#GENERATING TRAINNING GRAPH BASED ON CONFIG FILE T0 AND T0_
myparams.generating_Training_Graph()
#GENERATING TEST GRAPH BASED ON CONcvb FIG FILE T1 AND T1_
myparams.generating_Test_Graph()
nodeSelection = NodeSelection(myparams.trainnigGraph, myparams.testGraph, util)
#if not os.path.exists(FormatingDataSets.get_abs_file_path(util.trainnig_graph_file + '.fuzzyinputy.txt')):
data = calculatingInputToFuzzy(myparams.trainnigGraph,nodeSelection.nodesNotLinked, myparams)
saving_files_calculting_input(FormatingDataSets.get_abs_file_path(util.trainnig_graph_file + '.inputFuzzy.txt'), data)
for item in data:
calc = FuzzyCalculation(item['intensityno1'], item['intensityno2'], item['similarity'], item['ageno1'], item['ageno2'])
print item['no1'], item['no2'], calc.potencial_ligacao, calc.grau_potencial_ligacao
resultFile.write("\n")
#
resultFile.write("Authors\tArticles\tCollaborations\tAuthors\tEold\tEnew\n")
resultFile.write( str(myparams.get_nodes(myparams.trainnigGraph))+ "\t" + str(myparams.get_edges(myparams.trainnigGraph)) + "\t\t" + str(len(nodeSelection.get_NowellColaboration())*2)+ "\t\t" + str(len(nodeSelection.nodes)) + "\t" + str(len(nodeSelection.eOld))+"\t" + str(len(nodeSelection.eNeW)))
resultFile.write("\n")
resultFile.write("Fim da Operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.close()
示例6: execution
# 需要导入模块: from parametering.Parameterization import Parameterization [as 别名]
# 或者: from parametering.Parameterization.Parameterization import get_edges [as 别名]
def execution(configFile):
#DEFINE THE FILE THAT WILL KEEP THE RESULT DATA
resultFile = open(FormatingDataSets.get_abs_file_path(configFile + 'core03_execucaoFinal_cstT02.txt'), 'w')
resultFile.write("Inicio da operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.write("\n")
#READING THE CONFIG FILE
util = ParameterUtil(parameter_file = configFile)
#CREATING PARAMETRIZATION OBJECT WITH THE INFORMATIONS OF THE CONFIG FILE.
myparams = Parameterization(t0 = util.t0, t0_ = util.t0_, t1 = util.t1, t1_ = util.t1_, linear_combination=util.linear_combination,
filePathGraph = util.graph_file, filePathTrainingGraph = util.trainnig_graph_file, filePathTestGraph = util.test_graph_file, decay = util.decay, domain_decay = util.domain_decay, min_edges = util.min_edges, scoreChoiced = util.ScoresChoiced, weightsChoiced = util.WeightsChoiced, weightedScoresChoiced = util.WeightedScoresChoiced, FullGraph = None, result_random_file=util.result_random_file)
#GENERATING TRAINNING GRAPH BASED ON CONFIG FILE T0 AND T0_
myparams.generating_Training_Graph()
#GENERATING TEST GRAPH BASED ON CONcvb FIG FILE T1 AND T1_
myparams.generating_Test_Graph()
nodeSelection = NodeSelection(myparams.trainnigGraph, myparams.testGraph, util)
#CREATING CALCULATION OBJECT
calc = CalculatingTogether(myparams, nodeSelection.nodesNotLinked)
ordering = calc.ordering(len(nodeSelection.eNeW))
#calc.saving_orderedResult(util.ordered_file, ordering)
calc.AnalyseNodesInFuture(ordering, myparams.testGraph)
resultFile.write(repr(calc.get_TotalSucess()))
resultFile.write("\n")
#
resultFile.write("Authors\tArticles\tCollaborations\tAuthors\tEold\tEnew\n")
resultFile.write( str(myparams.get_nodes(myparams.trainnigGraph))+ "\t" + str(myparams.get_edges(myparams.trainnigGraph)) + "\t\t" + str(len(nodeSelection.get_NowellColaboration())*2)+ "\t\t" + str(len(nodeSelection.nodes)) + "\t" + str(len(nodeSelection.eOld))+"\t" + str(len(nodeSelection.eNeW)))
resultFile.write("\n")
resultFile.write("Fim da Operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.close()
示例7: execution
# 需要导入模块: from parametering.Parameterization import Parameterization [as 别名]
# 或者: from parametering.Parameterization.Parameterization import get_edges [as 别名]
def execution(configFile, metricas):
#DEFINE THE FILE THAT WILL KEEP THE RESULT DATA
resultFile = open(FormatingDataSets.get_abs_file_path(configFile + 'core03.txt'), 'w')
resultFile.write("Inicio da operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.write("\n")
#READING THE CONFIG FILE
util = ParameterUtil(parameter_file = configFile)
#CREATING PARAMETRIZATION OBJECT WITH THE INFORMATIONS OF THE CONFIG FILE.
myparams = Parameterization(t0 = util.t0, t0_ = util.t0_, t1 = util.t1, t1_ = util.t1_, linear_combination=util.linear_combination,
filePathGraph = util.graph_file, filePathTrainingGraph = util.trainnig_graph_file, filePathTestGraph = util.test_graph_file, decay = util.decay, domain_decay = util.domain_decay, min_edges = util.min_edges, scoreChoiced = util.ScoresChoiced, weightsChoiced = util.WeightsChoiced, weightedScoresChoiced = util.WeightedScoresChoiced, FullGraph = None, result_random_file=util.result_random_file)
#GENERATING TRAINNING GRAPH BASED ON CONFIG FILE T0 AND T0_
myparams.generating_Training_Graph()
#GENERATING TEST GRAPH BASED ON CONcvb FIG FILE T1 AND T1_
myparams.generating_Test_Graph()
nodeSelection = NodeSelection(myparams.trainnigGraph, myparams.testGraph, util)
#CREATING CALCULATION OBJECT
weights = {'cn' : 1, 'aas': 1, 'pa':1, 'jc': 1, 'ts08':1,'ts05': 1, 'ts02':1}
calc = CalculatingCombinationOnlyNowell(myparams, nodeSelection.nodesNotLinked,weights,False )
saving_files_calculting(FormatingDataSets.get_abs_file_path(util.calculated_file), calc.results, metricas)
Analise = nodeSelection.AnalyseAllNodesNotLinkedInFuture(nodeSelection.nodesNotLinked, myparams.testGraph)
salvar_analise(FormatingDataSets.get_abs_file_path(util.analysed_file) + '.allNodes.csv', Analise)
resultFile.write("Authors\tArticles\tCollaborations\tAuthors\tEold\tEnew\n")
resultFile.write( str(myparams.get_nodes(myparams.trainnigGraph))+ "\t" + str(myparams.get_edges(myparams.trainnigGraph)) + "\t\t" + str(len(nodeSelection.get_NowellColaboration())*2)+ "\t\t" + str(len(nodeSelection.nodes)) + "\t" + str(len(nodeSelection.eOld))+"\t" + str(len(nodeSelection.eNeW)))
resultFile.write("\n")
resultFile.write("Fim da Operacao\n")
resultFile.write(str(datetime.datetime.now()))
resultFile.close()
示例8: execution
# 需要导入模块: from parametering.Parameterization import Parameterization [as 别名]
# 或者: from parametering.Parameterization.Parameterization import get_edges [as 别名]
def execution(configFile, weights):
#DEFINE THE FILE THAT WILL KEEP THE RESULT DATA
resultFile = open(FormatingDataSets.get_abs_file_path(configFile + 'core03.txt'), 'w')
resultFile.write("Inicio da operacao\n")
resultFile.write(str(datetime.now()))
resultFile.write("\n")
#READING THE CONFIG FILE
util = ParameterUtil(parameter_file = configFile)
myparams = Parameterization(t0 = util.t0, t0_ = util.t0_, t1 = util.t1, t1_ = util.t1_, linear_combination=util.linear_combination,
filePathGraph = util.graph_file, filePathTrainingGraph = util.trainnig_graph_file, filePathTestGraph = util.test_graph_file, decay = util.decay, domain_decay = util.domain_decay, min_edges = util.min_edges, scoreChoiced = util.ScoresChoiced, weightsChoiced = util.WeightsChoiced, weightedScoresChoiced = util.WeightedScoresChoiced, FullGraph = None, result_random_file=util.result_random_file)
myparams.generating_Test_Graph()
myparams.generating_Training_Graph()
nodeSelection = NodeSelection(myparams.trainnigGraph, myparams.testGraph, util)
#CREATING CALCULATION OBJECT
calc = CalculatingCombinationOnlyNowell(myparams, nodeSelection.nodesNotLinked, weights, True)
ordering = calc.ordering(len(nodeSelection.eNeW))
calc.AnalyseNodesInFuture(ordering, myparams.testGraph)
resultFile.write(repr(calc.get_TotalSucess()))
resultFile.write("\n")
#
resultFile.write("Authors\tArticles\tCollaborations\tAuthors\tEold\tEnew\n")
resultFile.write( str(myparams.get_nodes(myparams.trainnigGraph))+ "\t" + str(myparams.get_edges(myparams.trainnigGraph)) + "\t\t" + str(len(nodeSelection.get_NowellColaboration())*2)+ "\t\t" + str(len(nodeSelection.nodes)) + "\t" + str(len(nodeSelection.eOld))+"\t" + str(len(nodeSelection.eNeW)))
resultFile.write("\n")
resultFile.write("Fim da Operacao\n")
resultFile.write(str(datetime.now()))
resultFile.close()
示例9: CalculateInMemory
# 需要导入模块: from parametering.Parameterization import Parameterization [as 别名]
# 或者: from parametering.Parameterization.Parameterization import get_edges [as 别名]
calc = CalculateInMemory(myparams, nodesNotLinked)
resultsCalculate = calc.executingCalculate()
calc.Separating_calculateFile()
analise = Analyse(myparams, FormatingDataSets.get_abs_file_path(util.calculated_file), FormatingDataSets.get_abs_file_path(util.analysed_file) + '.random.analised.txt', calc.qtyDataCalculated)
topRank = Analyse.getTopRank(util.analysed_file + '.random.analised.txt')
calc.Ordering_separating_File(topRank)
for OrderingFilePath in calc.getfilePathOrdered_separeted():
analise = Analyse(myparams, OrderingFilePath, OrderingFilePath + '.analised.txt', topRank )
print "Trainning Period:", myparams.t0, " - ", myparams.t0_
print "Test Period:", myparams.t1, " - ", myparams.t1_
print "# Papers in Trainning: ", myparams.get_edges(myparams.trainnigGraph)
print "# Authors in Training: ", myparams.get_nodes(myparams.trainnigGraph)
print "# Papers in Test: ", myparams.get_edges(myparams.testGraph)
print "# Authors in Test", myparams.get_nodes(myparams.testGraph)
print "# pair of Authors with at least 3 articles Calculated: ", calc.qtyDataCalculated #FormatingDataSets.getTotalLineNumbers(FormatingDataSets.get_abs_file_path(util.calculated_file))
print "# pair of Authors that is connected in Test Graph in a random way: ", topRank
print "Max values found in calculations: ", str(calc.maxValueCalculated)
print "Min Values found in calculations: ", str(calc.minValueCalculated)
for pathFile in calc.getfilePathOrdered_separeted():
print "File Analised: ", pathFile + '.analised.txt'
number_connected = Analyse.getTopRankABSPathFiles(pathFile + '.analised.txt')
print "# pair of Authors that is connected in Test Graph: ", number_connected
print "%: ", Analyse.getLastInfosofResultsABSPathFiles(pathFile + '.analised.txt', topRank)
print "---------------------------------"