本文整理汇总了Python中param.parameterized.ParamOverrides.extra_keywords方法的典型用法代码示例。如果您正苦于以下问题:Python ParamOverrides.extra_keywords方法的具体用法?Python ParamOverrides.extra_keywords怎么用?Python ParamOverrides.extra_keywords使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类param.parameterized.ParamOverrides
的用法示例。
在下文中一共展示了ParamOverrides.extra_keywords方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __call__
# 需要导入模块: from param.parameterized import ParamOverrides [as 别名]
# 或者: from param.parameterized.ParamOverrides import extra_keywords [as 别名]
def __call__(self,data,colors=None,**params):
p=ParamOverrides(self,params,allow_extra_keywords=True)
pylab.figure(figsize=(4,2))
n,bins,bars = pylab.hist(data,**(p.extra_keywords()))
# if len(bars)!=len(colors), any extra bars won't have their
# colors changed, or any extra colors will be ignored.
if colors: [bar.set_fc(color) for bar,color in zip(bars,colors)]
self._generate_figure(p)
示例2: __init__
# 需要导入模块: from param.parameterized import ParamOverrides [as 别名]
# 或者: from param.parameterized.ParamOverrides import extra_keywords [as 别名]
def __init__(self,inherent_features={},**params):
"""
If a dataset already and inherently includes certain features, a dictionary
with feature-name:code-to-access-the-feature pairs should be supplied
specifying how to select (e.g. from a set of images) the appropriate
feature value.
Any extra parameter values supplied here will be passed down to the
feature_coordinators requested in features_to_vary.
"""
p=ParamOverrides(self,params,allow_extra_keywords=True)
super(PatternCoordinator, self).__init__(**p.param_keywords())
self._feature_params = p.extra_keywords()
self._inherent_features = inherent_features
# And also, this key must be in feature_coordinators because _inherent_features
# can have additional features such as i to support multiple images
# TFALERT: Once spatial frequency (sf) is added, this will
# cause warnings, because all image datasets will have a
# spatial frequency inherent feature, but mostly we just
# ignore that by having only a single size of DoG, which
# discards all but a narrow range of sf. So the dataset will
# have sf inherently, but that won't be an error or even
# worthy of a warning.
if(len((set(self._inherent_features.keys()) - set(self.features_to_vary)) & set(self.feature_coordinators.keys()))):
self.warning('Inherent feature present which is not requested in features')
self._feature_coordinators_to_apply = []
for feature, feature_coordinator in self.feature_coordinators.iteritems():
if feature in self.features_to_vary and feature not in self._inherent_features:
# if it is a list, append each list item individually
if isinstance(feature_coordinator,list):
for individual_feature_coordinator in feature_coordinator:
self._feature_coordinators_to_apply.append(individual_feature_coordinator)
else:
self._feature_coordinators_to_apply.append(feature_coordinator)
示例3: __init__
# 需要导入模块: from param.parameterized import ParamOverrides [as 别名]
# 或者: from param.parameterized.ParamOverrides import extra_keywords [as 别名]
def __init__(self,inherent_features=[],**params):
"""
If a dataset already and inherently includes certain features,
a list with the inherent feature names should be supplied.
Any extra parameter values supplied here will be passed down
to the feature_coordinators requested in features_to_vary.
"""
p=ParamOverrides(self,params,allow_extra_keywords=True)
super(PatternCoordinator, self).__init__(**p.param_keywords())
self._feature_params = p.extra_keywords()
self._inherent_features = inherent_features
# TFALERT: Once spatial frequency (sf) is added, this will
# cause warnings, because all image datasets will have a
# spatial frequency inherent feature, but mostly we just
# ignore that by having only a single size of DoG, which
# discards all but a narrow range of sf. So the dataset will
# have sf inherently, but that won't be an error or even
# worthy of a warning.
if(len(set(self._inherent_features) - set(self.features_to_vary))):
self.warning('Inherent feature present which is not requested in features')
self._feature_coordinators_to_apply = []
for feature, feature_coordinator in self.feature_coordinators.items():
if feature in self.features_to_vary and feature not in self._inherent_features:
# if it is a list, append each list item individually
if isinstance(feature_coordinator,list):
for individual_feature_coordinator in feature_coordinator:
self._feature_coordinators_to_apply.append(individual_feature_coordinator)
else:
self._feature_coordinators_to_apply.append(feature_coordinator)
示例4: __call__
# 需要导入模块: from param.parameterized import ParamOverrides [as 别名]
# 或者: from param.parameterized.ParamOverrides import extra_keywords [as 别名]
def __call__(self,script_file,**params_to_override):
p=ParamOverrides(self,params_to_override,allow_extra_keywords=True)
import os
import shutil
# Construct simulation name, etc.
scriptbase= re.sub('.ty$','',os.path.basename(script_file))
prefix = ""
if p.timestamp==(0,0): prefix += time.strftime(p.name_time_format)
else: prefix += time.strftime(p.name_time_format, p.timestamp)
prefix += "_" + scriptbase + "_" + p.tag
simname = prefix
# Construct parameter-value portion of filename; should do more filtering
# CBENHANCEMENT: should provide chance for user to specify a
# function (i.e. make this a function, and have a parameter to
# allow the function to be overridden).
# And sort by name by default? Skip ones that aren't different
# from default, or at least put them at the end?
prefix += p.dirname_params_filter(p.extra_keywords())
# Set provided parameter values in main namespace
from topo.misc.commandline import global_params
global_params.set_in_context(**p.extra_keywords())
# Create output directories
if not os.path.isdir(normalize_path(p['output_directory'])):
try: os.mkdir(normalize_path(p['output_directory']))
except OSError: pass # Catches potential race condition (simultaneous run_batch runs)
dirname = self._truncate(p,p.dirname_prefix+prefix)
normalize_path.prefix = normalize_path(os.path.join(p['output_directory'],dirname))
if os.path.isdir(normalize_path.prefix):
print "Batch run: Warning -- directory already exists!"
print "Run aborted; wait one minute before trying again, or else rename existing directory: \n" + \
normalize_path.prefix
sys.exit(-1)
else:
os.mkdir(normalize_path.prefix)
print "Batch run output will be in " + normalize_path.prefix
if p['vc_info']:
_print_vc_info(simname+".diffs")
hostinfo = "Host: " + " ".join(platform.uname())
topographicalocation = "Topographica: " + os.path.abspath(sys.argv[0])
topolocation = "topo package: " + os.path.abspath(topo.__file__)
scriptlocation = "script: " + os.path.abspath(script_file)
starttime=time.time()
startnote = "Batch run started at %s." % time.strftime("%a %d %b %Y %H:%M:%S +0000",
time.gmtime())
# store a re-runnable copy of the command used to start this batch run
try:
# pipes.quote is undocumented, so I'm not sure which
# versions of python include it (I checked python 2.6 and
# 2.7 on linux; they both have it).
import pipes
quotefn = pipes.quote
except (ImportError,AttributeError):
# command will need a human to insert quotes before it can be re-used
quotefn = lambda x: x
command_used_to_start = string.join([quotefn(arg) for arg in sys.argv])
# CBENHANCEMENT: would be nice to separately write out a
# runnable script that does everything necessary to
# re-generate results (applies diffs etc).
# Shadow stdout to a .out file in the output directory, so that
# print statements will go to both the file and to stdout.
batch_output = open(normalize_path(simname+".out"),'w')
batch_output.write(command_used_to_start+"\n")
sys.stdout = MultiFile(batch_output,sys.stdout)
print
print hostinfo
print topographicalocation
print topolocation
print scriptlocation
print
print startnote
from topo.misc.commandline import auto_import_commands
auto_import_commands()
# Ensure that saved state includes all parameter values
from topo.command import save_script_repr
param.parameterized.script_repr_suppress_defaults=False
# Save a copy of the script file for reference
shutil.copy2(script_file, normalize_path.prefix)
shutil.move(normalize_path(scriptbase+".ty"),
normalize_path(simname+".ty"))
#.........这里部分代码省略.........