本文整理汇总了Python中pants.engine.storage.Storage.create方法的典型用法代码示例。如果您正苦于以下问题:Python Storage.create方法的具体用法?Python Storage.create怎么用?Python Storage.create使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pants.engine.storage.Storage
的用法示例。
在下文中一共展示了Storage.create方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from pants.engine.storage import Storage [as 别名]
# 或者: from pants.engine.storage.Storage import create [as 别名]
def __init__(self, scheduler, storage=None, cache=None, pool_size=None, debug=True):
"""
:param scheduler: The local scheduler for creating execution graphs.
:type scheduler: :class:`pants.engine.scheduler.LocalScheduler`
:param storage: The storage instance for serializables keyed by their hashes.
:type storage: :class:`pants.engine.storage.Storage`
:param cache: The cache instance for storing execution results, by default it uses the same
Storage instance if not specified.
:type cache: :class:`pants.engine.storage.Cache`
:param int pool_size: The number of worker processes to use; by default 2 processes per core will
be used.
:param bool debug: `True` to turn on pickling error debug mode (slower); True by default.
"""
# This is the only place where non in-memory storage is needed, create one if not specified.
storage = storage or Storage.create(in_memory=False)
super(LocalMultiprocessEngine, self).__init__(scheduler, storage, cache)
self._pool_size = pool_size if pool_size and pool_size > 0 else 2 * multiprocessing.cpu_count()
execute_step = functools.partial(_execute_step, debug)
self._processed_queue = Queue()
self.node_builder = scheduler.node_builder
process_initializer = functools.partial(_process_initializer, self._storage)
self._pool = StatefulPool(self._pool_size, process_initializer, execute_step)
self._debug = debug
self._pool.start()
示例2: __init__
# 需要导入模块: from pants.engine.storage import Storage [as 别名]
# 或者: from pants.engine.storage.Storage import create [as 别名]
def __init__(self):
# Objects indexed by their keys, i.e, content digests
self._objects = Storage.create()
# Memoized object Ids.
self._id_to_key = dict()
self._key_to_id = dict()
self._next_id = 0
示例3: setup_legacy_graph
# 需要导入模块: from pants.engine.storage import Storage [as 别名]
# 或者: from pants.engine.storage.Storage import create [as 别名]
def setup_legacy_graph(path_ignore_patterns):
"""Construct and return the components necessary for LegacyBuildGraph construction.
:param list path_ignore_patterns: A list of path ignore patterns for FileSystemProjectTree,
usually taken from the `--pants-ignore` global option.
:returns: A tuple of (scheduler, engine, symbol_table_cls, build_graph_cls).
"""
build_root = get_buildroot()
project_tree = FileSystemProjectTree(build_root, path_ignore_patterns)
symbol_table_cls = LegacySymbolTable
# Register "literal" subjects required for these tasks.
# TODO: Replace with `Subsystems`.
address_mapper = AddressMapper(symbol_table_cls=symbol_table_cls,
parser_cls=LegacyPythonCallbacksParser)
# Create a Scheduler containing graph and filesystem tasks, with no installed goals. The
# LegacyBuildGraph will explicitly request the products it needs.
tasks = (
create_legacy_graph_tasks() +
create_fs_tasks() +
create_graph_tasks(address_mapper, symbol_table_cls)
)
scheduler = LocalScheduler(dict(), tasks, project_tree)
engine = LocalSerialEngine(scheduler, Storage.create(debug=False))
return LegacyGraphHelper(scheduler, engine, symbol_table_cls, LegacyBuildGraph)
示例4: hybrid_engine
# 需要导入模块: from pants.engine.storage import Storage [as 别名]
# 或者: from pants.engine.storage.Storage import create [as 别名]
def hybrid_engine(self, pool_size=None):
async_nodes = (FilesystemNode,)
storage = Storage.create(in_memory=True)
cache = Cache.create(storage=storage)
with closing(ThreadHybridEngine(self.scheduler, storage,
threaded_node_types=async_nodes, cache=cache,
pool_size=pool_size, debug=True)) as e:
yield e
示例5: setUp
# 需要导入模块: from pants.engine.storage import Storage [as 别名]
# 或者: from pants.engine.storage.Storage import create [as 别名]
def setUp(self):
self.storage = Storage.create()
self.result = StepResult(state='something')
self.request = StepRequest(step_id=123,
node='some node',
dependencies={'some dep': 'some state',
'another dep': 'another state'},
inline_nodes=False,
project_tree='some project tree')
示例6: setUp
# 需要导入模块: from pants.engine.storage import Storage [as 别名]
# 或者: from pants.engine.storage.Storage import create [as 别名]
def setUp(self):
self.storage = Storage.create(in_memory=True)
self.result = StepResult(state="something")
self.request = StepRequest(
step_id=123,
node="some node",
dependencies={"some dep": "some state", "another dep": "another state"},
project_tree="some project tree",
)
示例7: visualize_build_request
# 需要导入模块: from pants.engine.storage import Storage [as 别名]
# 或者: from pants.engine.storage.Storage import create [as 别名]
def visualize_build_request(build_root, goals, subjects):
with subsystem_instance(Native.Factory) as native_factory:
scheduler = setup_json_scheduler(build_root, native_factory.create())
execution_request = scheduler.build_request(goals, subjects)
# NB: Calls `reduce` independently of `execute`, in order to render a graph before validating it.
engine = LocalSerialEngine(scheduler, Storage.create())
engine.reduce(execution_request)
visualize_execution_graph(scheduler)
示例8: visualize_build_request
# 需要导入模块: from pants.engine.storage import Storage [as 别名]
# 或者: from pants.engine.storage.Storage import create [as 别名]
def visualize_build_request(build_root, goals, subjects):
scheduler = setup_json_scheduler(build_root)
execution_request = scheduler.build_request(goals, subjects)
# NB: Calls `reduce` independently of `execute`, in order to render a graph before validating it.
engine = LocalSerialEngine(scheduler, Storage.create())
try:
engine.reduce(execution_request)
visualize_execution_graph(scheduler, execution_request)
finally:
engine.close()
示例9: __init__
# 需要导入模块: from pants.engine.storage import Storage [as 别名]
# 或者: from pants.engine.storage.Storage import create [as 别名]
def __init__(self, scheduler, storage=None, cache=None):
"""
:param scheduler: The local scheduler for creating execution graphs.
:type scheduler: :class:`pants.engine.scheduler.LocalScheduler`
:param storage: The storage instance for serializables keyed by their hashes.
:type storage: :class:`pants.engine.storage.Storage`
:param cache: The cache instance for storing execution results, by default it uses the same
Storage instance if not specified.
:type cache: :class:`pants.engine.storage.Cache`
"""
self._scheduler = scheduler
self._storage = storage or Storage.create()
self._cache = cache or Cache.create(storage)
示例10: mk_scheduler
# 需要导入模块: from pants.engine.storage import Storage [as 别名]
# 或者: from pants.engine.storage.Storage import create [as 别名]
def mk_scheduler(self,
tasks=None,
goals=None,
storage=None,
project_tree=None,
symbol_table_cls=EmptyTable):
"""Creates a Scheduler with "native" tasks already included, and the given additional tasks."""
goals = goals or dict()
tasks = tasks or []
storage = storage or Storage.create(in_memory=True)
project_tree = project_tree or self.mk_fs_tree()
tasks = list(tasks) + create_fs_tasks()
scheduler = LocalScheduler(goals, tasks, storage, project_tree)
return scheduler, storage
示例11: __init__
# 需要导入模块: from pants.engine.storage import Storage [as 别名]
# 或者: from pants.engine.storage.Storage import create [as 别名]
def __init__(self, scheduler, storage=None, cache=None, use_cache=True):
"""
:param scheduler: The local scheduler for creating execution graphs.
:type scheduler: :class:`pants.engine.scheduler.LocalScheduler`
:param storage: The storage instance for serializables keyed by their hashes.
:type storage: :class:`pants.engine.storage.Storage`
:param cache: The cache instance for storing execution results, by default it uses the same
Storage instance if not specified.
:type cache: :class:`pants.engine.storage.Cache`
:param use_cache: True to enable usage of the cache. The cache incurs a large amount of
overhead for small tasks, and needs TODO: further improvement.
:type use_cache: bool
"""
self._scheduler = scheduler
self._storage = storage or Storage.create()
self._cache = cache or Cache.create(storage)
self._use_cache = use_cache
示例12: setup_legacy_graph
# 需要导入模块: from pants.engine.storage import Storage [as 别名]
# 或者: from pants.engine.storage.Storage import create [as 别名]
def setup_legacy_graph(pants_ignore_patterns,
build_root=None,
symbol_table_cls=None,
build_ignore_patterns=None,
exclude_target_regexps=None):
"""Construct and return the components necessary for LegacyBuildGraph construction.
:param list pants_ignore_patterns: A list of path ignore patterns for FileSystemProjectTree,
usually taken from the '--pants-ignore' global option.
:param str build_root: A path to be used as the build root. If None, then default is used.
:param SymbolTable symbol_table_cls: A SymbolTable class to use for build file parsing, or
None to use the default.
:param list build_ignore_patterns: A list of paths ignore patterns used when searching for BUILD
files, usually taken from the '--build-ignore' global option.
:param list exclude_target_regexps: A list of regular expressions for excluding targets.
:returns: A tuple of (scheduler, engine, symbol_table_cls, build_graph_cls).
"""
build_root = build_root or get_buildroot()
scm = get_scm()
symbol_table_cls = symbol_table_cls or LegacySymbolTable
project_tree = FileSystemProjectTree(build_root, pants_ignore_patterns)
# Register "literal" subjects required for these tasks.
# TODO: Replace with `Subsystems`.
address_mapper = AddressMapper(symbol_table_cls=symbol_table_cls,
parser_cls=LegacyPythonCallbacksParser,
build_ignore_patterns=build_ignore_patterns,
exclude_target_regexps=exclude_target_regexps)
# Create a Scheduler containing graph and filesystem tasks, with no installed goals. The
# LegacyBuildGraph will explicitly request the products it needs.
tasks = (
create_legacy_graph_tasks(symbol_table_cls) +
create_fs_tasks() +
create_graph_tasks(address_mapper, symbol_table_cls)
)
scheduler = LocalScheduler(dict(), tasks, project_tree)
# TODO: Do not use the cache yet, as it incurs a high overhead.
engine = LocalSerialEngine(scheduler, Storage.create(), use_cache=False)
change_calculator = EngineChangeCalculator(engine, scm) if scm else None
return LegacyGraphHelper(scheduler, engine, symbol_table_cls, change_calculator)
示例13: setUp
# 需要导入模块: from pants.engine.storage import Storage [as 别名]
# 或者: from pants.engine.storage.Storage import create [as 别名]
def setUp(self):
# Set up a scheduler that supports address mapping.
symbol_table_cls = TargetTable
self.storage = Storage.create(in_memory=True)
address_mapper = AddressMapper(symbol_table_cls=symbol_table_cls,
parser_cls=JsonParser,
build_pattern=r'.+\.BUILD.json$')
tasks = create_graph_tasks(address_mapper, symbol_table_cls)
project_tree = self.mk_fs_tree(os.path.join(os.path.dirname(__file__), 'examples/mapper_test'))
self.build_root = project_tree.build_root
self.scheduler, _ = self.mk_scheduler(tasks=tasks,
project_tree=project_tree,
storage=self.storage,
symbol_table_cls=symbol_table_cls)
self.a_b = Address.parse('a/b')
self.a_b_target = Target(name='b',
dependencies=['//d:e'],
configurations=['//a', Struct(embedded='yes')],
type_alias='target')
示例14: setUp
# 需要导入模块: from pants.engine.storage import Storage [as 别名]
# 或者: from pants.engine.storage.Storage import create [as 别名]
def setUp(self):
"""Setup cache as well as request and result."""
self.storage = Storage.create()
self.cache = Cache.create(storage=self.storage)
self.request = Runnable(func=_runnable, args=("this is an arg",), cacheable=True)
self.result = "something"
示例15: setUp
# 需要导入模块: from pants.engine.storage import Storage [as 别名]
# 或者: from pants.engine.storage.Storage import create [as 别名]
def setUp(self):
build_root = os.path.join(os.path.dirname(__file__), 'examples', 'scheduler_inputs')
self.scheduler, self.storage = setup_json_scheduler(build_root, debug=True)
self.cache = Cache.create(Storage.create())
self.java = Address.parse('src/java/codegen/simple')