本文整理汇总了Python中pants.backend.jvm.subsystems.jvm_tool_mixin.JvmToolMixin.get_registered_tools方法的典型用法代码示例。如果您正苦于以下问题:Python JvmToolMixin.get_registered_tools方法的具体用法?Python JvmToolMixin.get_registered_tools怎么用?Python JvmToolMixin.get_registered_tools使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pants.backend.jvm.subsystems.jvm_tool_mixin.JvmToolMixin
的用法示例。
在下文中一共展示了JvmToolMixin.get_registered_tools方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: execute
# 需要导入模块: from pants.backend.jvm.subsystems.jvm_tool_mixin import JvmToolMixin [as 别名]
# 或者: from pants.backend.jvm.subsystems.jvm_tool_mixin.JvmToolMixin import get_registered_tools [as 别名]
def execute(self):
registered_tools = JvmToolMixin.get_registered_tools()
if registered_tools:
# Map of scope -> (map of key -> callback).
callback_product_map = self.context.products.get_data('jvm_build_tools_classpath_callbacks',
init_func=lambda: defaultdict(dict))
# We leave a callback in the products map because we want these Ivy calls
# to be done lazily (they might never actually get executed) and we want
# to hit Task.invalidated (called in Task._ivy_resolve) on the instance of
# BootstrapJvmTools rather than the instance of whatever class requires
# the bootstrap tools. It would be awkward and possibly incorrect to call
# self.invalidated twice on a Task that does meaningful invalidation on its
# targets. -pl
for jvm_tool in registered_tools:
dep_spec = jvm_tool.dep_spec(self.context.options)
callback = self.cached_bootstrap_classpath_callback(dep_spec, jvm_tool)
callback_product_map[jvm_tool.scope][jvm_tool.key] = callback
if self.get_options().eager:
with self.context.new_workunit('eager'):
for scope, callbacks_by_key in callback_product_map.items():
for key, callback in callbacks_by_key.items():
try:
callback()
except self.ToolUnderspecified:
pass # We don't want to fail for placeholder registrations
示例2: get_alternate_target_roots
# 需要导入模块: from pants.backend.jvm.subsystems.jvm_tool_mixin import JvmToolMixin [as 别名]
# 或者: from pants.backend.jvm.subsystems.jvm_tool_mixin.JvmToolMixin import get_registered_tools [as 别名]
def get_alternate_target_roots(cls, options, address_mapper, build_graph):
processed = set()
for jvm_tool in JvmToolMixin.get_registered_tools():
dep_spec = jvm_tool.dep_spec(options)
dep_address = Address.parse(dep_spec)
# Some JVM tools are requested multiple times, we only need to handle them once.
if dep_address not in processed:
processed.add(dep_address)
try:
if build_graph.resolve_address(dep_address):
# The user has defined a tool classpath override - we let that stand.
continue
except AddressLookupError as e:
if jvm_tool.classpath is None:
raise cls._tool_resolve_error(e, dep_spec, jvm_tool)
else:
if not jvm_tool.is_default(options):
# The user specified a target spec for this jvm tool that doesn't actually exist.
# We want to error out here instead of just silently using the default option while
# appearing to respect their config.
raise cls.ToolResolveError(dedent("""
Failed to resolve target for tool: {tool}. This target was obtained from
option {option} in scope {scope}.
Make sure you didn't make a typo in the tool's address. You specified that the
tool should use the target found at "{tool}".
This target has a default classpath configured, so you can simply remove:
[{scope}]
{option}: {tool}
from pants.ini (or any other config file) to use the default tool.
The default classpath is: {default_classpath}
Note that tool target addresses in pants.ini should be specified *without* quotes.
""").strip().format(tool=dep_spec,
option=jvm_tool.key,
scope=jvm_tool.scope,
default_classpath=':'.join(map(str, jvm_tool.classpath or ()))))
if jvm_tool.classpath:
tool_classpath_target = JarLibrary(name=dep_address.target_name,
address=dep_address,
build_graph=build_graph,
jars=jvm_tool.classpath)
else:
# The tool classpath is empty by default, so we just inject a dummy target that
# ivy resolves as the empty list classpath. JarLibrary won't do since it requires
# one or more jars, so we just pick a target type ivy has no resolve work to do for.
tool_classpath_target = Target(name=dep_address.target_name,
address=dep_address,
build_graph=build_graph)
build_graph.inject_target(tool_classpath_target, synthetic=True)
# We use the trick of not returning alternate roots, but instead just filling the dep_spec
# holes with a JarLibrary built from a tool's default classpath JarDependency list if there is
# no over-riding targets present. This means we do modify the build_graph, but we at least do
# it at a time in the engine lifecycle cut out for handling that.
return None
示例3: execute
# 需要导入模块: from pants.backend.jvm.subsystems.jvm_tool_mixin import JvmToolMixin [as 别名]
# 或者: from pants.backend.jvm.subsystems.jvm_tool_mixin.JvmToolMixin import get_registered_tools [as 别名]
def execute(self):
context = self.context
if JvmToolMixin.get_registered_tools():
# Map of scope -> (map of key -> callback).
callback_product_map = (context.products.get_data('jvm_build_tools_classpath_callbacks') or
defaultdict(dict))
# We leave a callback in the products map because we want these Ivy calls
# to be done lazily (they might never actually get executed) and we want
# to hit Task.invalidated (called in Task.ivy_resolve) on the instance of
# BootstrapJvmTools rather than the instance of whatever class requires
# the bootstrap tools. It would be awkward and possibly incorrect to call
# self.invalidated twice on a Task that does meaningful invalidation on its
# targets. -pl
for scope, key, main, custom_rules in JvmToolMixin.get_registered_tools():
option = key.replace('-', '_')
deplist = self.context.options.for_scope(scope)[option]
callback_product_map[scope][key] = self.cached_bootstrap_classpath_callback(
key, scope, deplist, main=main, custom_rules=custom_rules)
context.products.safe_create_data('jvm_build_tools_classpath_callbacks',
lambda: callback_product_map)
示例4: execute
# 需要导入模块: from pants.backend.jvm.subsystems.jvm_tool_mixin import JvmToolMixin [as 别名]
# 或者: from pants.backend.jvm.subsystems.jvm_tool_mixin.JvmToolMixin import get_registered_tools [as 别名]
def execute(self):
registered_tools = JvmToolMixin.get_registered_tools()
if registered_tools:
# Map of scope -> (map of key -> callback).
callback_product_map = self.context.products.get_data(
"jvm_build_tools_classpath_callbacks", init_func=lambda: defaultdict(dict)
)
# We leave a callback in the products map because we want these Ivy calls
# to be done lazily (they might never actually get executed) and we want
# to hit Task.invalidated (called in Task.ivy_resolve) on the instance of
# BootstrapJvmTools rather than the instance of whatever class requires
# the bootstrap tools. It would be awkward and possibly incorrect to call
# self.invalidated twice on a Task that does meaningful invalidation on its
# targets. -pl
for jvm_tool in registered_tools:
dep_spec = jvm_tool.dep_spec(self.context.options)
callback = self.cached_bootstrap_classpath_callback(dep_spec, jvm_tool)
callback_product_map[jvm_tool.scope][jvm_tool.key] = callback
示例5: _alternate_target_roots
# 需要导入模块: from pants.backend.jvm.subsystems.jvm_tool_mixin import JvmToolMixin [as 别名]
# 或者: from pants.backend.jvm.subsystems.jvm_tool_mixin.JvmToolMixin import get_registered_tools [as 别名]
def _alternate_target_roots(cls, options, address_mapper, build_graph):
processed = set()
for jvm_tool in JvmToolMixin.get_registered_tools():
dep_spec = jvm_tool.dep_spec(options)
dep_address = Address.parse(dep_spec)
# Some JVM tools are requested multiple times, we only need to handle them once.
if dep_address not in processed:
processed.add(dep_address)
try:
if build_graph.contains_address(dep_address) or address_mapper.resolve(dep_address):
# The user has defined a tool classpath override - we let that stand.
continue
except AddressLookupError as e:
if jvm_tool.classpath is None:
raise cls._tool_resolve_error(e, dep_spec, jvm_tool)
else:
if jvm_tool.classpath:
tool_classpath_target = JarLibrary(
name=dep_address.target_name,
address=dep_address,
build_graph=build_graph,
jars=jvm_tool.classpath,
)
else:
# The tool classpath is empty by default, so we just inject a dummy target that
# ivy resolves as the empty list classpath. JarLibrary won't do since it requires
# one or more jars, so we just pick a target type ivy has no resolve work to do for.
tool_classpath_target = Target(
name=dep_address.target_name, address=dep_address, build_graph=build_graph
)
build_graph.inject_target(tool_classpath_target)
# We use the trick of not returning alternate roots, but instead just filling the dep_spec
# holes with a JarLibrary built from a tool's default classpath JarDependency list if there is
# no over-riding targets present. This means we do modify the build_graph, but we at least do
# it at a time in the engine lifecycle cut out for handling that.
return None