本文整理汇总了Python中pandas.sparse.api.SparseSeries.to_dense方法的典型用法代码示例。如果您正苦于以下问题:Python SparseSeries.to_dense方法的具体用法?Python SparseSeries.to_dense怎么用?Python SparseSeries.to_dense使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pandas.sparse.api.SparseSeries
的用法示例。
在下文中一共展示了SparseSeries.to_dense方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_valid
# 需要导入模块: from pandas.sparse.api import SparseSeries [as 别名]
# 或者: from pandas.sparse.api.SparseSeries import to_dense [as 别名]
def test_valid(self):
sp = SparseSeries([0, 0, 0, nan, nan, 5, 6], fill_value=0)
sp_valid = sp.valid()
assert_almost_equal(sp_valid, sp.to_dense().valid())
self.assert_(sp_valid.index.equals(sp.to_dense().valid().index))
self.assertEquals(len(sp_valid.sp_values), 2)
示例2: test_dropna
# 需要导入模块: from pandas.sparse.api import SparseSeries [as 别名]
# 或者: from pandas.sparse.api.SparseSeries import to_dense [as 别名]
def test_dropna(self):
sp = SparseSeries([0, 0, 0, nan, nan, 5, 6], fill_value=0)
sp_valid = sp.valid()
assert_almost_equal(sp_valid.values, sp.to_dense().valid().values)
self.assert_(sp_valid.index.equals(sp.to_dense().valid().index))
self.assertEquals(len(sp_valid.sp_values), 2)
result = self.bseries.dropna()
expected = self.bseries.to_dense().dropna()
self.assert_(not isinstance(result, SparseSeries))
tm.assert_series_equal(result, expected)
示例3: TestSparseSeriesAnalytics
# 需要导入模块: from pandas.sparse.api import SparseSeries [as 别名]
# 或者: from pandas.sparse.api.SparseSeries import to_dense [as 别名]
class TestSparseSeriesAnalytics(tm.TestCase):
def setUp(self):
arr, index = _test_data1()
self.bseries = SparseSeries(arr, index=index, kind='block',
name='bseries')
arr, index = _test_data1_zero()
self.zbseries = SparseSeries(arr, index=index, kind='block',
fill_value=0, name='zbseries')
def test_cumsum(self):
result = self.bseries.cumsum()
expected = SparseSeries(self.bseries.to_dense().cumsum())
tm.assert_sp_series_equal(result, expected)
# TODO: gh-12855 - return a SparseSeries here
result = self.zbseries.cumsum()
expected = self.zbseries.to_dense().cumsum()
self.assertNotIsInstance(result, SparseSeries)
tm.assert_series_equal(result, expected)
def test_numpy_cumsum(self):
result = np.cumsum(self.bseries)
expected = SparseSeries(self.bseries.to_dense().cumsum())
tm.assert_sp_series_equal(result, expected)
# TODO: gh-12855 - return a SparseSeries here
result = np.cumsum(self.zbseries)
expected = self.zbseries.to_dense().cumsum()
self.assertNotIsInstance(result, SparseSeries)
tm.assert_series_equal(result, expected)
msg = "the 'dtype' parameter is not supported"
tm.assertRaisesRegexp(ValueError, msg, np.cumsum,
self.bseries, dtype=np.int64)
msg = "the 'out' parameter is not supported"
tm.assertRaisesRegexp(ValueError, msg, np.cumsum,
self.zbseries, out=result)
def test_numpy_func_call(self):
# no exception should be raised even though
# numpy passes in 'axis=None' or `axis=-1'
funcs = ['sum', 'cumsum', 'var', 'mean',
'prod', 'cumprod', 'std', 'argsort',
'argmin', 'argmax', 'min', 'max']
for func in funcs:
for series in ('bseries', 'zbseries'):
getattr(np, func)(getattr(self, series))
示例4: TestSparseSeriesAnalytics
# 需要导入模块: from pandas.sparse.api import SparseSeries [as 别名]
# 或者: from pandas.sparse.api.SparseSeries import to_dense [as 别名]
class TestSparseSeriesAnalytics(tm.TestCase):
def setUp(self):
arr, index = _test_data1()
self.bseries = SparseSeries(arr, index=index, kind='block',
name='bseries')
arr, index = _test_data1_zero()
self.zbseries = SparseSeries(arr, index=index, kind='block',
fill_value=0, name='zbseries')
def test_cumsum(self):
result = self.bseries.cumsum()
expected = SparseSeries(self.bseries.to_dense().cumsum())
tm.assert_sp_series_equal(result, expected)
# TODO: gh-12855 - return a SparseSeries here
result = self.zbseries.cumsum()
expected = self.zbseries.to_dense().cumsum()
self.assertNotIsInstance(result, SparseSeries)
tm.assert_series_equal(result, expected)
def test_numpy_cumsum(self):
result = np.cumsum(self.bseries)
expected = SparseSeries(self.bseries.to_dense().cumsum())
tm.assert_sp_series_equal(result, expected)
# TODO: gh-12855 - return a SparseSeries here
result = np.cumsum(self.zbseries)
expected = self.zbseries.to_dense().cumsum()
self.assertNotIsInstance(result, SparseSeries)
tm.assert_series_equal(result, expected)
msg = "the 'dtype' parameter is not supported"
tm.assertRaisesRegexp(ValueError, msg, np.cumsum,
self.bseries, dtype=np.int64)
msg = "the 'out' parameter is not supported"
tm.assertRaisesRegexp(ValueError, msg, np.cumsum,
self.zbseries, out=result)
示例5: test_numpy_take
# 需要导入模块: from pandas.sparse.api import SparseSeries [as 别名]
# 或者: from pandas.sparse.api.SparseSeries import to_dense [as 别名]
def test_numpy_take(self):
sp = SparseSeries([1.0, 2.0, 3.0])
indices = [1, 2]
tm.assert_series_equal(np.take(sp, indices, axis=0).to_dense(),
np.take(sp.to_dense(), indices, axis=0))
msg = "the 'out' parameter is not supported"
tm.assertRaisesRegexp(ValueError, msg, np.take,
sp, indices, out=np.empty(sp.shape))
msg = "the 'mode' parameter is not supported"
tm.assertRaisesRegexp(ValueError, msg, np.take,
sp, indices, mode='clip')
示例6: test_dropna
# 需要导入模块: from pandas.sparse.api import SparseSeries [as 别名]
# 或者: from pandas.sparse.api.SparseSeries import to_dense [as 别名]
def test_dropna(self):
sp = SparseSeries([0, 0, 0, nan, nan, 5, 6], fill_value=0)
sp_valid = sp.valid()
expected = sp.to_dense().valid()
expected = expected[expected != 0]
tm.assert_almost_equal(sp_valid.values, expected.values)
self.assertTrue(sp_valid.index.equals(expected.index))
self.assertEqual(len(sp_valid.sp_values), 2)
result = self.bseries.dropna()
expected = self.bseries.to_dense().dropna()
self.assertNotIsInstance(result, SparseSeries)
tm.assert_series_equal(result, expected)
示例7: test_dropna
# 需要导入模块: from pandas.sparse.api import SparseSeries [as 别名]
# 或者: from pandas.sparse.api.SparseSeries import to_dense [as 别名]
def test_dropna(self):
sp = SparseSeries([0, 0, 0, nan, nan, 5, 6], fill_value=0)
sp_valid = sp.valid()
expected = sp.to_dense().valid()
expected = expected[expected != 0]
exp_arr = pd.SparseArray(expected.values, fill_value=0, kind='block')
tm.assert_sp_array_equal(sp_valid.values, exp_arr)
self.assert_index_equal(sp_valid.index, expected.index)
self.assertEqual(len(sp_valid.sp_values), 2)
result = self.bseries.dropna()
expected = self.bseries.to_dense().dropna()
self.assertNotIsInstance(result, SparseSeries)
tm.assert_series_equal(result, expected)
示例8: TestSparseSeries
# 需要导入模块: from pandas.sparse.api import SparseSeries [as 别名]
# 或者: from pandas.sparse.api.SparseSeries import to_dense [as 别名]
class TestSparseSeries(tm.TestCase, SharedWithSparse):
_multiprocess_can_split_ = True
def setUp(self):
arr, index = _test_data1()
date_index = bdate_range('1/1/2011', periods=len(index))
self.bseries = SparseSeries(arr, index=index, kind='block',
name='bseries')
self.ts = self.bseries
self.btseries = SparseSeries(arr, index=date_index, kind='block')
self.iseries = SparseSeries(arr, index=index, kind='integer',
name='iseries')
arr, index = _test_data2()
self.bseries2 = SparseSeries(arr, index=index, kind='block')
self.iseries2 = SparseSeries(arr, index=index, kind='integer')
arr, index = _test_data1_zero()
self.zbseries = SparseSeries(arr, index=index, kind='block',
fill_value=0, name='zbseries')
self.ziseries = SparseSeries(arr, index=index, kind='integer',
fill_value=0)
arr, index = _test_data2_zero()
self.zbseries2 = SparseSeries(arr, index=index, kind='block',
fill_value=0)
self.ziseries2 = SparseSeries(arr, index=index, kind='integer',
fill_value=0)
def test_constructor_dtype(self):
arr = SparseSeries([np.nan, 1, 2, np.nan])
self.assertEqual(arr.dtype, np.float64)
self.assertTrue(np.isnan(arr.fill_value))
arr = SparseSeries([np.nan, 1, 2, np.nan], fill_value=0)
self.assertEqual(arr.dtype, np.float64)
self.assertEqual(arr.fill_value, 0)
arr = SparseSeries([0, 1, 2, 4], dtype=np.int64)
self.assertEqual(arr.dtype, np.int64)
self.assertTrue(np.isnan(arr.fill_value))
arr = SparseSeries([0, 1, 2, 4], fill_value=0, dtype=np.int64)
self.assertEqual(arr.dtype, np.int64)
self.assertEqual(arr.fill_value, 0)
def test_iteration_and_str(self):
[x for x in self.bseries]
str(self.bseries)
def test_TimeSeries_deprecation(self):
# deprecation TimeSeries, #10890
with tm.assert_produces_warning(FutureWarning):
pd.SparseTimeSeries(1, index=pd.date_range('20130101', periods=3))
def test_construct_DataFrame_with_sp_series(self):
# it works!
df = DataFrame({'col': self.bseries})
# printing & access
df.iloc[:1]
df['col']
df.dtypes
str(df)
tm.assert_sp_series_equal(df['col'], self.bseries, check_names=False)
result = df.iloc[:, 0]
tm.assert_sp_series_equal(result, self.bseries, check_names=False)
# blocking
expected = Series({'col': 'float64:sparse'})
result = df.ftypes
tm.assert_series_equal(expected, result)
def test_series_density(self):
# GH2803
ts = Series(np.random.randn(10))
ts[2:-2] = nan
sts = ts.to_sparse()
density = sts.density # don't die
self.assertEqual(density, 4 / 10.0)
def test_sparse_to_dense(self):
arr, index = _test_data1()
series = self.bseries.to_dense()
assert_equal(series, arr)
series = self.bseries.to_dense(sparse_only=True)
assert_equal(series, arr[np.isfinite(arr)])
series = self.iseries.to_dense()
assert_equal(series, arr)
arr, index = _test_data1_zero()
#.........这里部分代码省略.........
示例9: TestSparseSeries
# 需要导入模块: from pandas.sparse.api import SparseSeries [as 别名]
# 或者: from pandas.sparse.api.SparseSeries import to_dense [as 别名]
class TestSparseSeries(TestCase, test_series.CheckNameIntegration):
def setUp(self):
arr, index = _test_data1()
date_index = DateRange("1/1/2011", periods=len(index))
self.bseries = SparseSeries(arr, index=index, kind="block")
self.bseries.name = "bseries"
self.ts = self.bseries
self.btseries = SparseSeries(arr, index=date_index, kind="block")
self.iseries = SparseSeries(arr, index=index, kind="integer")
arr, index = _test_data2()
self.bseries2 = SparseSeries(arr, index=index, kind="block")
self.iseries2 = SparseSeries(arr, index=index, kind="integer")
arr, index = _test_data1_zero()
self.zbseries = SparseSeries(arr, index=index, kind="block", fill_value=0)
self.ziseries = SparseSeries(arr, index=index, kind="integer", fill_value=0)
arr, index = _test_data2_zero()
self.zbseries2 = SparseSeries(arr, index=index, kind="block", fill_value=0)
self.ziseries2 = SparseSeries(arr, index=index, kind="integer", fill_value=0)
def test_construct_DataFrame_with_sp_series(self):
# it works!
df = DataFrame({"col": self.bseries})
def test_sparse_to_dense(self):
arr, index = _test_data1()
series = self.bseries.to_dense()
assert_equal(series, arr)
series = self.bseries.to_dense(sparse_only=True)
assert_equal(series, arr[np.isfinite(arr)])
series = self.iseries.to_dense()
assert_equal(series, arr)
arr, index = _test_data1_zero()
series = self.zbseries.to_dense()
assert_equal(series, arr)
series = self.ziseries.to_dense()
assert_equal(series, arr)
def test_dense_to_sparse(self):
series = self.bseries.to_dense()
bseries = series.to_sparse(kind="block")
iseries = series.to_sparse(kind="integer")
assert_sp_series_equal(bseries, self.bseries)
assert_sp_series_equal(iseries, self.iseries)
# non-NaN fill value
series = self.zbseries.to_dense()
zbseries = series.to_sparse(kind="block", fill_value=0)
ziseries = series.to_sparse(kind="integer", fill_value=0)
assert_sp_series_equal(zbseries, self.zbseries)
assert_sp_series_equal(ziseries, self.ziseries)
def test_to_dense_preserve_name(self):
assert self.bseries.name is not None
result = self.bseries.to_dense()
self.assertEquals(result.name, self.bseries.name)
def test_constructor(self):
# test setup guys
self.assert_(np.isnan(self.bseries.fill_value))
self.assert_(isinstance(self.bseries.sp_index, BlockIndex))
self.assert_(np.isnan(self.iseries.fill_value))
self.assert_(isinstance(self.iseries.sp_index, IntIndex))
self.assertEquals(self.zbseries.fill_value, 0)
assert_equal(self.zbseries.values, self.bseries.to_dense().fillna(0))
# pass SparseSeries
s2 = SparseSeries(self.bseries)
s3 = SparseSeries(self.iseries)
s4 = SparseSeries(self.zbseries)
assert_sp_series_equal(s2, self.bseries)
assert_sp_series_equal(s3, self.iseries)
assert_sp_series_equal(s4, self.zbseries)
# Sparse time series works
date_index = DateRange("1/1/2000", periods=len(self.bseries))
s5 = SparseSeries(self.bseries, index=date_index)
self.assert_(isinstance(s5, SparseTimeSeries))
# pass Series
bseries2 = SparseSeries(self.bseries.to_dense())
assert_equal(self.bseries.sp_values, bseries2.sp_values)
# pass dict?
# don't copy the data by default
values = np.ones(len(self.bseries.sp_values))
sp = SparseSeries(values, sparse_index=self.bseries.sp_index)
#.........这里部分代码省略.........