当前位置: 首页>>代码示例>>Python>>正文


Python SparseDataFrame.to_dense方法代码示例

本文整理汇总了Python中pandas.core.sparse.api.SparseDataFrame.to_dense方法的典型用法代码示例。如果您正苦于以下问题:Python SparseDataFrame.to_dense方法的具体用法?Python SparseDataFrame.to_dense怎么用?Python SparseDataFrame.to_dense使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pandas.core.sparse.api.SparseDataFrame的用法示例。


在下文中一共展示了SparseDataFrame.to_dense方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: TestSparseDataFrameAnalytics

# 需要导入模块: from pandas.core.sparse.api import SparseDataFrame [as 别名]
# 或者: from pandas.core.sparse.api.SparseDataFrame import to_dense [as 别名]
class TestSparseDataFrameAnalytics(tm.TestCase):
    def setUp(self):
        self.data = {'A': [nan, nan, nan, 0, 1, 2, 3, 4, 5, 6],
                     'B': [0, 1, 2, nan, nan, nan, 3, 4, 5, 6],
                     'C': np.arange(10, dtype=float),
                     'D': [0, 1, 2, 3, 4, 5, nan, nan, nan, nan]}

        self.dates = bdate_range('1/1/2011', periods=10)

        self.frame = SparseDataFrame(self.data, index=self.dates)

    def test_cumsum(self):
        expected = SparseDataFrame(self.frame.to_dense().cumsum())

        result = self.frame.cumsum()
        tm.assert_sp_frame_equal(result, expected)

        result = self.frame.cumsum(axis=None)
        tm.assert_sp_frame_equal(result, expected)

        result = self.frame.cumsum(axis=0)
        tm.assert_sp_frame_equal(result, expected)

    def test_numpy_cumsum(self):
        result = np.cumsum(self.frame)
        expected = SparseDataFrame(self.frame.to_dense().cumsum())
        tm.assert_sp_frame_equal(result, expected)

        msg = "the 'dtype' parameter is not supported"
        tm.assertRaisesRegexp(ValueError, msg, np.cumsum,
                              self.frame, dtype=np.int64)

        msg = "the 'out' parameter is not supported"
        tm.assertRaisesRegexp(ValueError, msg, np.cumsum,
                              self.frame, out=result)

    def test_numpy_func_call(self):
        # no exception should be raised even though
        # numpy passes in 'axis=None' or `axis=-1'
        funcs = ['sum', 'cumsum', 'var',
                 'mean', 'prod', 'cumprod',
                 'std', 'min', 'max']
        for func in funcs:
            getattr(np, func)(self.frame)
开发者ID:tsdlovell,项目名称:pandas,代码行数:46,代码来源:test_frame.py

示例2: TestSparseDataFrame

# 需要导入模块: from pandas.core.sparse.api import SparseDataFrame [as 别名]
# 或者: from pandas.core.sparse.api.SparseDataFrame import to_dense [as 别名]
class TestSparseDataFrame(SharedWithSparse):
    klass = SparseDataFrame

    # SharedWithSparse tests use generic, klass-agnostic assertion
    _assert_frame_equal = staticmethod(tm.assert_sp_frame_equal)
    _assert_series_equal = staticmethod(tm.assert_sp_series_equal)

    def setup_method(self, method):
        self.data = {'A': [nan, nan, nan, 0, 1, 2, 3, 4, 5, 6],
                     'B': [0, 1, 2, nan, nan, nan, 3, 4, 5, 6],
                     'C': np.arange(10, dtype=np.float64),
                     'D': [0, 1, 2, 3, 4, 5, nan, nan, nan, nan]}

        self.dates = bdate_range('1/1/2011', periods=10)

        self.orig = pd.DataFrame(self.data, index=self.dates)
        self.iorig = pd.DataFrame(self.data, index=self.dates)

        self.frame = SparseDataFrame(self.data, index=self.dates)
        self.iframe = SparseDataFrame(self.data, index=self.dates,
                                      default_kind='integer')
        self.mixed_frame = self.frame.copy(False)
        self.mixed_frame['foo'] = pd.SparseArray(['bar'] * len(self.dates))

        values = self.frame.values.copy()
        values[np.isnan(values)] = 0

        self.zorig = pd.DataFrame(values, columns=['A', 'B', 'C', 'D'],
                                  index=self.dates)
        self.zframe = SparseDataFrame(values, columns=['A', 'B', 'C', 'D'],
                                      default_fill_value=0, index=self.dates)

        values = self.frame.values.copy()
        values[np.isnan(values)] = 2

        self.fill_orig = pd.DataFrame(values, columns=['A', 'B', 'C', 'D'],
                                      index=self.dates)
        self.fill_frame = SparseDataFrame(values, columns=['A', 'B', 'C', 'D'],
                                          default_fill_value=2,
                                          index=self.dates)

        self.empty = SparseDataFrame()

    def test_fill_value_when_combine_const(self):
        # GH12723
        dat = np.array([0, 1, np.nan, 3, 4, 5], dtype='float')
        df = SparseDataFrame({'foo': dat}, index=range(6))

        exp = df.fillna(0).add(2)
        res = df.add(2, fill_value=0)
        tm.assert_sp_frame_equal(res, exp)

    def test_values(self):
        empty = self.empty.values
        assert empty.shape == (0, 0)

        no_cols = SparseDataFrame(index=np.arange(10))
        mat = no_cols.values
        assert mat.shape == (10, 0)

        no_index = SparseDataFrame(columns=np.arange(10))
        mat = no_index.values
        assert mat.shape == (0, 10)

    def test_copy(self):
        cp = self.frame.copy()
        assert isinstance(cp, SparseDataFrame)
        tm.assert_sp_frame_equal(cp, self.frame)

        # as of v0.15.0
        # this is now identical (but not is_a )
        assert cp.index.identical(self.frame.index)

    def test_constructor(self):
        for col, series in compat.iteritems(self.frame):
            assert isinstance(series, SparseSeries)

        assert isinstance(self.iframe['A'].sp_index, IntIndex)

        # constructed zframe from matrix above
        assert self.zframe['A'].fill_value == 0
        tm.assert_numpy_array_equal(pd.SparseArray([1., 2., 3., 4., 5., 6.]),
                                    self.zframe['A'].values)
        tm.assert_numpy_array_equal(np.array([0., 0., 0., 0., 1., 2.,
                                              3., 4., 5., 6.]),
                                    self.zframe['A'].to_dense().values)

        # construct no data
        sdf = SparseDataFrame(columns=np.arange(10), index=np.arange(10))
        for col, series in compat.iteritems(sdf):
            assert isinstance(series, SparseSeries)

        # construct from nested dict
        data = {}
        for c, s in compat.iteritems(self.frame):
            data[c] = s.to_dict()

        sdf = SparseDataFrame(data)
        tm.assert_sp_frame_equal(sdf, self.frame)

#.........这里部分代码省略.........
开发者ID:MasonGallo,项目名称:pandas,代码行数:103,代码来源:test_frame.py

示例3: TestSparseDataFrameAnalytics

# 需要导入模块: from pandas.core.sparse.api import SparseDataFrame [as 别名]
# 或者: from pandas.core.sparse.api.SparseDataFrame import to_dense [as 别名]
class TestSparseDataFrameAnalytics(object):
    def setup_method(self, method):
        self.data = {'A': [nan, nan, nan, 0, 1, 2, 3, 4, 5, 6],
                     'B': [0, 1, 2, nan, nan, nan, 3, 4, 5, 6],
                     'C': np.arange(10, dtype=float),
                     'D': [0, 1, 2, 3, 4, 5, nan, nan, nan, nan]}

        self.dates = bdate_range('1/1/2011', periods=10)

        self.frame = SparseDataFrame(self.data, index=self.dates)

    def test_cumsum(self):
        expected = SparseDataFrame(self.frame.to_dense().cumsum())

        result = self.frame.cumsum()
        tm.assert_sp_frame_equal(result, expected)

        result = self.frame.cumsum(axis=None)
        tm.assert_sp_frame_equal(result, expected)

        result = self.frame.cumsum(axis=0)
        tm.assert_sp_frame_equal(result, expected)

    def test_numpy_cumsum(self):
        result = np.cumsum(self.frame)
        expected = SparseDataFrame(self.frame.to_dense().cumsum())
        tm.assert_sp_frame_equal(result, expected)

        msg = "the 'dtype' parameter is not supported"
        tm.assert_raises_regex(ValueError, msg, np.cumsum,
                               self.frame, dtype=np.int64)

        msg = "the 'out' parameter is not supported"
        tm.assert_raises_regex(ValueError, msg, np.cumsum,
                               self.frame, out=result)

    def test_numpy_func_call(self):
        # no exception should be raised even though
        # numpy passes in 'axis=None' or `axis=-1'
        funcs = ['sum', 'cumsum', 'var',
                 'mean', 'prod', 'cumprod',
                 'std', 'min', 'max']
        for func in funcs:
            getattr(np, func)(self.frame)

    @pytest.mark.xfail(reason='Wrong SparseBlock initialization '
                              '(GH 17386)')
    def test_quantile(self):
        # GH 17386
        data = [[1, 1], [2, 10], [3, 100], [nan, nan]]
        q = 0.1

        sparse_df = SparseDataFrame(data)
        result = sparse_df.quantile(q)

        dense_df = DataFrame(data)
        dense_expected = dense_df.quantile(q)
        sparse_expected = SparseSeries(dense_expected)

        tm.assert_series_equal(result, dense_expected)
        tm.assert_sp_series_equal(result, sparse_expected)

    @pytest.mark.xfail(reason='Wrong SparseBlock initialization '
                              '(GH 17386)')
    def test_quantile_multi(self):
        # GH 17386
        data = [[1, 1], [2, 10], [3, 100], [nan, nan]]
        q = [0.1, 0.5]

        sparse_df = SparseDataFrame(data)
        result = sparse_df.quantile(q)

        dense_df = DataFrame(data)
        dense_expected = dense_df.quantile(q)
        sparse_expected = SparseDataFrame(dense_expected)

        tm.assert_frame_equal(result, dense_expected)
        tm.assert_sp_frame_equal(result, sparse_expected)

    def test_assign_with_sparse_frame(self):
        # GH 19163
        df = pd.DataFrame({"a": [1, 2, 3]})
        res = df.to_sparse(fill_value=False).assign(newcol=False)
        exp = df.assign(newcol=False).to_sparse(fill_value=False)

        tm.assert_sp_frame_equal(res, exp)

        for column in res.columns:
            assert type(res[column]) is SparseSeries
开发者ID:MasonGallo,项目名称:pandas,代码行数:91,代码来源:test_frame.py


注:本文中的pandas.core.sparse.api.SparseDataFrame.to_dense方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。