当前位置: 首页>>代码示例>>Python>>正文


Python api.Series类代码示例

本文整理汇总了Python中pandas.core.api.Series的典型用法代码示例。如果您正苦于以下问题:Python Series类的具体用法?Python Series怎么用?Python Series使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了Series类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_categorical_zeroes

 def test_categorical_zeroes(self):
     # keep the `d` category with 0
     s = Series(pd.Categorical(
         list('bbbaac'), categories=list('abcd'), ordered=True))
     result = s.value_counts()
     expected = Series([3, 2, 1, 0], index=pd.Categorical(
         ['b', 'a', 'c', 'd'], categories=list('abcd'), ordered=True))
     tm.assert_series_equal(result, expected, check_index_type=True)
开发者ID:DLlearn,项目名称:pandas,代码行数:8,代码来源:test_algos.py

示例2: test_save_load

 def test_save_load(self):
     self.series.save('tmp1')
     self.ts.save('tmp3')
     unp_series = Series.load('tmp1')
     unp_ts = Series.load('tmp3')
     os.remove('tmp1')
     os.remove('tmp3')
     assert_series_equal(unp_series, self.series)
     assert_series_equal(unp_ts, self.ts)
开发者ID:pedrot,项目名称:pandas,代码行数:9,代码来源:test_series.py

示例3: percentileRank

def percentileRank(frame, column=None, kind='mean'):
    """
    Return score at percentile for each point in time (cross-section)

    Parameters
    ----------
    frame: DataFrame
    column: string or Series, optional
       Column name or specific Series to compute percentiles for.
       If not provided, percentiles are computed for all values at each
       point in time. Note that this can take a LONG time.
    kind: {'rank', 'weak', 'strict', 'mean'}, optional
        This optional parameter specifies the interpretation of the
        resulting score:

        - "rank": Average percentage ranking of score.  In case of
                  multiple matches, average the percentage rankings of
                  all matching scores.
        - "weak": This kind corresponds to the definition of a cumulative
                  distribution function.  A percentileofscore of 80%
                  means that 80% of values are less than or equal
                  to the provided score.
        - "strict": Similar to "weak", except that only values that are
                    strictly less than the given score are counted.
        - "mean": The average of the "weak" and "strict" scores, often used in
                  testing.  See

                  http://en.wikipedia.org/wiki/Percentile_rank

    See also
    --------
    scipy.stats.percentileofscore

    Returns
    -------
    TimeSeries or DataFrame, depending on input
    """
    from scipy.stats import percentileofscore
    fun = lambda xs, score: percentileofscore(remove_na(xs),
                                              score, kind=kind)

    results = {}
    framet = frame.T
    if column is not None:
        if isinstance(column, Series):
            for date, xs in frame.T.iteritems():
                results[date] = fun(xs, column.get(date, NaN))
        else:
            for date, xs in frame.T.iteritems():
                results[date] = fun(xs, xs[column])
        results = Series(results)
    else:
        for column in frame.columns:
            for date, xs in framet.iteritems():
                results.setdefault(date, {})[column] = fun(xs, xs[column])
        results = DataFrame(results).T
    return results
开发者ID:EmlynC,项目名称:pandas,代码行数:57,代码来源:misc.py

示例4: _nobs_raw

    def _nobs_raw(self):
        if self._is_rolling:
            window = self._window
        else:
            # expanding case
            window = len(self._index)

        result = Series(self._time_obs_count).rolling(window, min_periods=1).sum().values

        return result.astype(int)
开发者ID:ChunHungLiu,项目名称:pandas,代码行数:10,代码来源:ols.py

示例5: test_fromValue

    def test_fromValue(self):
        nans = Series.fromValue(np.NaN, index=self.ts.index)
        self.assert_(nans.dtype == np.float_)

        strings = Series.fromValue('foo', index=self.ts.index)
        self.assert_(strings.dtype == np.object_)

        d = datetime.now()
        dates = Series.fromValue(d, index=self.ts.index)
        self.assert_(dates.dtype == np.object_)
开发者ID:pedrot,项目名称:pandas,代码行数:10,代码来源:test_series.py

示例6: test_merge_int

    def test_merge_int(self):
        left = Series({'a' : 1., 'b' : 2., 'c' : 3., 'd' : 4})
        right = Series({1 : 11, 2 : 22, 3 : 33})

        self.assert_(left.dtype == np.float_)
        self.assert_(issubclass(right.dtype.type, np.integer))

        merged = left.merge(right)
        self.assert_(merged.dtype == np.float_)
        self.assert_(isnull(merged['d']))
        self.assert_(not isnull(merged['c']))
开发者ID:choketsu,项目名称:pandas,代码行数:11,代码来源:test_series.py

示例7: test_categorical

    def test_categorical(self):
        s = Series(pd.Categorical(list('aaabbc')))
        result = s.value_counts()
        expected = pd.Series([3, 2, 1], index=pd.CategoricalIndex(['a', 'b', 'c']))
        tm.assert_series_equal(result, expected, check_index_type=True)

        # preserve order?
        s = s.cat.as_ordered()
        result = s.value_counts()
        expected.index = expected.index.as_ordered()
        tm.assert_series_equal(result, expected, check_index_type=True)
开发者ID:ajcr,项目名称:pandas,代码行数:11,代码来源:test_algos.py

示例8: y_fitted

    def y_fitted(self):
        """Returns the fitted y values.  This equals BX."""
        if self._weights is None:
            index = self._x_filtered.index
            orig_index = index
        else:
            index = self._y.index
            orig_index = self._y_orig.index

        result = Series(self._y_fitted_raw, index=index)
        return result.reindex(orig_index)
开发者ID:Black-Milk,项目名称:pandas,代码行数:11,代码来源:ols.py

示例9: test_fill

    def test_fill(self):
        ts = Series([0., 1., 2., 3., 4.], index=common.makeDateIndex(5))

        self.assert_(np.array_equal(ts, ts.fill()))

        ts[2] = np.NaN

        self.assert_(np.array_equal(ts.fill(), [0., 1., 1., 3., 4.]))
        self.assert_(np.array_equal(ts.fill(method='backfill'), [0., 1., 3., 3., 4.]))

        self.assert_(np.array_equal(ts.fill(value=5), [0., 1., 5., 3., 4.]))
开发者ID:pedrot,项目名称:pandas,代码行数:11,代码来源:test_series.py

示例10: test_iloc_setitem_series

    def test_iloc_setitem_series(self):
        s = Series(np.random.randn(10), index=range(0,20,2))

        s.iloc[1] = 1
        result = s.iloc[1]
        self.assert_(result == 1)

        s.iloc[:4] = 0
        expected = s.iloc[:4]
        result = s.iloc[:4]
        assert_series_equal(result, expected)
开发者ID:ptmahent,项目名称:pandas,代码行数:11,代码来源:test_indexing.py

示例11: test_reindex_int

    def test_reindex_int(self):
        ts = self.ts[::2]
        int_ts = Series(np.zeros(len(ts), dtype=int), index=ts.index)

        # this should work fine
        reindexed_int = int_ts.reindex(self.ts.index)

        # if NaNs introduced
        self.assert_(reindexed_int.dtype == np.float_)

        # NO NaNs introduced
        reindexed_int = int_ts.reindex(int_ts.index[::2])
        self.assert_(reindexed_int.dtype == np.int_)
开发者ID:pedrot,项目名称:pandas,代码行数:13,代码来源:test_series.py

示例12: test_firstValid

    def test_firstValid(self):
        ts = self.ts.copy()
        ts[:5] = np.NaN

        index = ts._firstTimeWithValue()
        self.assertEqual(index, ts.index[5])

        ts[-5:] = np.NaN
        index = ts._lastTimeWithValue()
        self.assertEqual(index, ts.index[-6])

        ser = Series([], index=[])
        self.assert_(ser._lastTimeWithValue() is None)
        self.assert_(ser._firstTimeWithValue() is None)
开发者ID:pedrot,项目名称:pandas,代码行数:14,代码来源:test_series.py

示例13: test_value_counts

    def test_value_counts(self):
        np.random.seed(1234)
        from pandas.tools.tile import cut

        arr = np.random.randn(4)
        factor = cut(arr, 4)

        tm.assertIsInstance(factor, Categorical)
        result = algos.value_counts(factor)
        cats = ['(-1.194, -0.535]', '(-0.535, 0.121]', '(0.121, 0.777]',
                '(0.777, 1.433]']
        expected_index = CategoricalIndex(cats, cats, ordered=True)
        expected = Series([1, 1, 1, 1], index=expected_index)
        tm.assert_series_equal(result.sort_index(), expected.sort_index())
开发者ID:DLlearn,项目名称:pandas,代码行数:14,代码来源:test_algos.py

示例14: test_categorical_nans

    def test_categorical_nans(self):
        s = Series(pd.Categorical(list('aaaaabbbcc')))  # 4,3,2,1 (nan)
        s.iloc[1] = np.nan
        result = s.value_counts()
        expected = pd.Series([4, 3, 2], index=pd.CategoricalIndex(
            ['a', 'b', 'c'], categories=['a', 'b', 'c']))
        tm.assert_series_equal(result, expected, check_index_type=True)
        result = s.value_counts(dropna=False)
        expected = pd.Series([
            4, 3, 2, 1
        ], index=pd.CategoricalIndex(['a', 'b', 'c', np.nan]))
        tm.assert_series_equal(result, expected, check_index_type=True)

        # out of order
        s = Series(pd.Categorical(
            list('aaaaabbbcc'), ordered=True, categories=['b', 'a', 'c']))
        s.iloc[1] = np.nan
        result = s.value_counts()
        expected = pd.Series([4, 3, 2], index=pd.CategoricalIndex(
            ['a', 'b', 'c'], categories=['b', 'a', 'c'], ordered=True))
        tm.assert_series_equal(result, expected, check_index_type=True)

        result = s.value_counts(dropna=False)
        expected = pd.Series([4, 3, 2, 1], index=pd.CategoricalIndex(
            ['a', 'b', 'c', np.nan], categories=['b', 'a', 'c'], ordered=True))
        tm.assert_series_equal(result, expected, check_index_type=True)
开发者ID:DLlearn,项目名称:pandas,代码行数:26,代码来源:test_algos.py

示例15: test_value_counts_normalized

    def test_value_counts_normalized(self):
        # GH12558
        s = Series([1, 2, np.nan, np.nan, np.nan])
        dtypes = (np.float64, np.object, 'M8[ns]')
        for t in dtypes:
            s_typed = s.astype(t)
            result = s_typed.value_counts(normalize=True, dropna=False)
            expected = Series([0.6, 0.2, 0.2],
                              index=Series([np.nan, 2.0, 1.0], dtype=t))
            tm.assert_series_equal(result, expected)

            result = s_typed.value_counts(normalize=True, dropna=True)
            expected = Series([0.5, 0.5],
                              index=Series([2.0, 1.0], dtype=t))
            tm.assert_series_equal(result, expected)
开发者ID:Casyfill,项目名称:Capstone_dashboard,代码行数:15,代码来源:test_algos.py


注:本文中的pandas.core.api.Series类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。