本文整理汇总了Python中pandas.compat.OrderedDict类的典型用法代码示例。如果您正苦于以下问题:Python OrderedDict类的具体用法?Python OrderedDict怎么用?Python OrderedDict使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了OrderedDict类的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_orderedDict_ctor
def test_orderedDict_ctor(self):
# GH3283
import pandas
import random
data = OrderedDict([('col%s' % i, random.random()) for i in range(12)])
s = pandas.Series(data)
self.assertTrue(all(s.values == list(data.values())))
示例2: create_mgr
def create_mgr(descr, item_shape=None):
"""
Construct BlockManager from string description.
String description syntax looks similar to np.matrix initializer. It looks
like this::
a,b,c: f8; d,e,f: i8
Rules are rather simple:
* see list of supported datatypes in `create_block` method
* components are semicolon-separated
* each component is `NAME,NAME,NAME: DTYPE_ID`
* whitespace around colons & semicolons are removed
* components with same DTYPE_ID are combined into single block
* to force multiple blocks with same dtype, use '-SUFFIX'::
'a:f8-1; b:f8-2; c:f8-foobar'
"""
if item_shape is None:
item_shape = (N, )
offset = 0
mgr_items = []
block_placements = OrderedDict()
for d in descr.split(';'):
d = d.strip()
if not len(d):
continue
names, blockstr = d.partition(':')[::2]
blockstr = blockstr.strip()
names = names.strip().split(',')
mgr_items.extend(names)
placement = list(np.arange(len(names)) + offset)
try:
block_placements[blockstr].extend(placement)
except KeyError:
block_placements[blockstr] = placement
offset += len(names)
mgr_items = Index(mgr_items)
blocks = []
num_offset = 0
for blockstr, placement in block_placements.items():
typestr = blockstr.split('-')[0]
blocks.append(create_block(typestr,
placement,
item_shape=item_shape,
num_offset=num_offset, ))
num_offset += len(placement)
return BlockManager(sorted(blocks, key=lambda b: b.mgr_locs[0]),
[mgr_items] + [np.arange(n) for n in item_shape])
示例3: _init_dict
def _init_dict(self, data, axes, dtype=None):
haxis = axes.pop(self._info_axis_number)
# prefilter if haxis passed
if haxis is not None:
haxis = _ensure_index(haxis)
data = OrderedDict((k, v) for k, v
in compat.iteritems(data) if k in haxis)
else:
ks = list(data.keys())
if not isinstance(data, OrderedDict):
ks = _try_sort(ks)
haxis = Index(ks)
for k, v in compat.iteritems(data):
if isinstance(v, dict):
data[k] = self._constructor_sliced(v)
# extract axis for remaining axes & create the slicemap
raxes = [self._extract_axis(self, data, axis=i)
if a is None else a for i, a in enumerate(axes)]
raxes_sm = self._extract_axes_for_slice(self, raxes)
# shallow copy
arrays = []
haxis_shape = [len(a) for a in raxes]
for h in haxis:
v = values = data.get(h)
if v is None:
values = np.empty(haxis_shape, dtype=dtype)
values.fill(np.nan)
elif isinstance(v, self._constructor_sliced):
d = raxes_sm.copy()
d['copy'] = False
v = v.reindex(**d)
if dtype is not None:
v = v.astype(dtype)
values = v.values
arrays.append(values)
return self._init_arrays(arrays, haxis, [haxis] + raxes)
示例4: dict
REPEAT_DEFAULTS = dict(axis=None)
validate_repeat = CompatValidator(REPEAT_DEFAULTS, fname='repeat',
method='both', max_fname_arg_count=1)
ROUND_DEFAULTS = dict(out=None)
validate_round = CompatValidator(ROUND_DEFAULTS, fname='round',
method='both', max_fname_arg_count=1)
SORT_DEFAULTS = OrderedDict()
SORT_DEFAULTS['axis'] = -1
SORT_DEFAULTS['kind'] = 'quicksort'
SORT_DEFAULTS['order'] = None
validate_sort = CompatValidator(SORT_DEFAULTS, fname='sort',
method='kwargs')
STAT_FUNC_DEFAULTS = OrderedDict()
STAT_FUNC_DEFAULTS['dtype'] = None
STAT_FUNC_DEFAULTS['out'] = None
PROD_DEFAULTS = SUM_DEFAULTS = STAT_FUNC_DEFAULTS.copy()
SUM_DEFAULTS['keepdims'] = False
SUM_DEFAULTS['initial'] = None
MEDIAN_DEFAULTS = STAT_FUNC_DEFAULTS.copy()
MEDIAN_DEFAULTS['overwrite_input'] = False
MEDIAN_DEFAULTS['keepdims'] = False
STAT_FUNC_DEFAULTS['keepdims'] = False
validate_stat_func = CompatValidator(STAT_FUNC_DEFAULTS,
method='kwargs')