本文整理汇总了Python中pandas.ExcelWriter.close方法的典型用法代码示例。如果您正苦于以下问题:Python ExcelWriter.close方法的具体用法?Python ExcelWriter.close怎么用?Python ExcelWriter.close使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pandas.ExcelWriter
的用法示例。
在下文中一共展示了ExcelWriter.close方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: build_and_send_email
# 需要导入模块: from pandas import ExcelWriter [as 别名]
# 或者: from pandas.ExcelWriter import close [as 别名]
def build_and_send_email(self, data, options):
date = timezone.now().date().strftime('%Y_%m_%d')
if 'recipients' in options:
print 'yes'
recipients = options['recipients']
else:
print 'no'
recipients = settings.DEFAULT_WEEKLY_RECIPIENTS
print 'recipients:', recipients
message = EmailMessage(subject='Kikar Hamedina, Weekly Report: %s' % date,
body='Kikar Hamedina, Weekly Report: %s.' % date,
to=recipients)
w = ExcelWriter('Weekly_report_%s.xlsx' % date)
for datum in data:
# csvfile = StringIO.StringIO()
pd.DataFrame.from_dict(datum['content']).to_excel(w, sheet_name=datum['name'])
w.save()
w.close()
# f = open(w.path, 'r', encoding='utf-8')
message.attach_file(w.path)
message.send()
示例2: save_peaks_excel
# 需要导入模块: from pandas import ExcelWriter [as 别名]
# 或者: from pandas.ExcelWriter import close [as 别名]
def save_peaks_excel(peakOnlyHdf5,xlsxFile):
dsets = h5py.File(peakOnlyHdf5,'r')
writer = ExcelWriter(xlsxFile)
for _key in dsets.keys():
dset = dsets[_key]
_df = pd.DataFrame(list(dset))
_df.to_excel(writer,_key,header=False, index=False)
print(_key+'sheet is created')
writer.save()
writer.close()
示例3: GetPrices
# 需要导入模块: from pandas import ExcelWriter [as 别名]
# 或者: from pandas.ExcelWriter import close [as 别名]
def GetPrices():
""" Goes to the URL, Reads the CSV download link, and creates the CSV DataFrame"""
url = "http://fundresearch.fidelity.com/mutual-funds/fidelity-funds-daily-pricing-yields/download"
CSV_Import = urllib.request.urlopen(url).read()
CSV = pd.read_csv(url, skiprows=3)
""" Creates CSV File to be opened in Excel.
This can be removed if you don't need Excel and you can just use CSV as the DataFrame """
File = 'DailyPrices'
writer = ExcelWriter(str(File) + '.xlsx')
CSV.to_excel(writer, 'DailyReport', index = False)
writer.close()
os.startfile(File + '.xlsx')
示例4: save_data
# 需要导入模块: from pandas import ExcelWriter [as 别名]
# 或者: from pandas.ExcelWriter import close [as 别名]
def save_data(Working_Directory, Result_Directory, name_file, Duration_ON, Duration_OFF, Num_pixels_ON, Num_pixels_OFF):
## Excel data
#Save duration
Duration = list()
Stimulus_Type = list()
Matched_Pixels = list()
Stimulus_Index = list()
count=0
for ii in xrange(size(Duration_ON,0)):
Duration.append(mean(Duration_ON[ii,:]))
Matched_Pixels.append(Num_pixels_ON[ii,:])
Stimulus_Type.append(str(count+1)+'ON')
Stimulus_Index.append(count)
count=count+1
for ii in xrange(size(Duration_OFF,0)):
Duration.append(mean(Duration_OFF[ii,:]))
Matched_Pixels.append(Num_pixels_OFF[ii,:])
Stimulus_Type.append(str(count+1)+'OFF')
Stimulus_Index.append(count)
count=count+1
## For fish 23, change OFF to ON and save
# Stimulus_Type[2] = '3ON'
#Save matched_pixels
Name_stimulus = get_list_of_stimulus_name(Working_Directory)
Label_plane, Label_stimulus = label_stimulus(Name_stimulus,Stimulus_Type)
Stim_type_all = repeat(Stimulus_Type, size(Matched_Pixels,1))
Matched_Pixels_all = reshape(Matched_Pixels, (size(Matched_Pixels)))
Name_stimulus_all = tile(Name_stimulus, size(Matched_Pixels,0))
# Some data frames
df1 = DataFrame({'Stimulus_Type':Stimulus_Type,'TDuration':Duration}) #Only duration
df2 = DataFrame(index=Stimulus_Index, columns=Name_stimulus) # pixels to concatenate with duration
df3 = DataFrame(index=Stimulus_Type, columns=Name_stimulus) #pixels tandalone
df4 = DataFrame({'Stimulus_Type':Stim_type_all, 'Pixels':Matched_Pixels_all,\
'Label_plane':Label_plane, 'Label_stimulus':Label_stimulus, 'Original_Stim':Name_stimulus_all}) #label pixels with stimulus and z plane
df4["Stimulus"] = df4.Label_stimulus.map(Label_Odor_reverse)
for ii in xrange(0,size(Stimulus_Index)):
df2.ix[ii] = Matched_Pixels[ii]
df3.ix[ii] = Matched_Pixels[ii]
df = concat([df1,df2], join='inner', axis=1)
#Save to excel
writer = ExcelWriter(Result_Directory+ filesep+'Classified_Results'+filesep+name_file+ '.xlsx', engine='xlsxwriter')
df.to_excel(writer, sheet_name='sheet1')
writer.close()
return df, df1, df3, df4
示例5: build_and_send_email
# 需要导入模块: from pandas import ExcelWriter [as 别名]
# 或者: from pandas.ExcelWriter import close [as 别名]
def build_and_send_email(self, data, options):
date = timezone.now().date().strftime('%Y_%m_%d')
if options['beta_recipients_from_db']:
print 'beta recipients requested from db.'
recipients = [a.email for a in WeeklyReportRecipients.objects.filter(is_active=True, is_beta=True)]
elif options['recipients_from_db']:
print 'recipients requested from db.'
recipients = [a.email for a in WeeklyReportRecipients.objects.filter(is_active=True)]
elif options['recipients']:
print 'manual recipients requested.'
recipients = options['recipients']
else:
print 'no recipients requested.'
recipients = settings.DEFAULT_WEEKLY_RECIPIENTS
if not recipients:
print 'no recipients in db.'
recipients = settings.DEFAULT_WEEKLY_RECIPIENTS
print 'recipients:', recipients
message = EmailMessage(subject='Kikar Hamedina, Weekly Report: %s' % date,
body='Kikar Hamedina, Weekly Report: %s.' % date,
to=recipients)
w = ExcelWriter('Weekly_report_%s.xlsx' % date)
for datum in data:
# csvfile = StringIO.StringIO()
pd.DataFrame.from_dict(datum['content']).to_excel(w, sheet_name=datum['name'])
w.save()
w.close()
# f = open(w.path, 'r', encoding='utf-8')
message.attach_file(w.path)
message.send()
示例6: gdx_to_df
# 需要导入模块: from pandas import ExcelWriter [as 别名]
# 或者: from pandas.ExcelWriter import close [as 别名]
print 'get balance'
print 'retrieving marg'
marg = gdx_to_df(gdx_file, 'marg')
old_index = marg.index.names
marg['C'] = [zone_dict[z] for z in marg.index.get_level_values('Z')]
marg.set_index('C', append=True, inplace=True)
marg = marg.reorder_levels(['C'] + old_index)
marg.reset_index(inplace=True)
marg = pivot_table(marg, 'marg', index=['Y', 'P', 'T'], columns=['C'], aggfunc=np.sum)
print 'Writing balances.m to Excel'
marg.to_excel(writer, na_rep=0.0, sheet_name='balance', merge_cells=False)
writer.close()
# wb = load_workbook(writefile)
# ws1 = wb.active
# gen_techn = list()
# gen_energ = list()
# gen_margc = list()
# final = list()
# for r in range (2,len(ws1.rows)+1,1):
# #smaller loop for testing
# #for r in range (2,100,1):
# currentg = ws1.cell(row = r, column = 4).value
# currente = ws1.cell(row = r, column = 5).value
# currentc = ws1.cell(row = r, column = 6).value
# if currentg not in gen_techn:
# gen_techn.append(currentg)
示例7: print
# 需要导入模块: from pandas import ExcelWriter [as 别名]
# 或者: from pandas.ExcelWriter import close [as 别名]
elif df.loc[l[i], 'Signal'] == "Hold":
df.loc[l[i], 'Investment'] = df.loc[l[i-1], 'Investment'] * (1 + df.loc[l[i], "Returns"])
print(df.head())
#Excess Return over S&P500 Column
#for i in range(1,len(l)):
# df.loc[l[i], 'Excess Return'] = df.loc[l[i], 'Investment'] - df.loc[l[i], 'S&P500 Investment']
file = ExcelWriter('Time1.xlsx')
df.to_excel(file, 'Data')
file.close()
os.startfile('Time1.xlsx')
df.plot(y = ['Investment', 'S&P500 Investment'])
plt.show()
print("Average Monday return: %s" % (Monday/MonCount))
print("Average Tuesday return: %s" % (Tuesday/TueCount))
print("Average Wednesday return: %s" % (Wednesday/WedCount))
print("Average Thursday return: %s" % (Thursday/ThuCount))
print("Average Friday return: %s" % (Friday/FriCount))
print("1 sample t-tests for each day to test significance of daily returns against 0 are as follows:")