当前位置: 首页>>代码示例>>Python>>正文


Python AttributeCache.write_table方法代码示例

本文整理汇总了Python中opus_core.store.attribute_cache.AttributeCache.write_table方法的典型用法代码示例。如果您正苦于以下问题:Python AttributeCache.write_table方法的具体用法?Python AttributeCache.write_table怎么用?Python AttributeCache.write_table使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在opus_core.store.attribute_cache.AttributeCache的用法示例。


在下文中一共展示了AttributeCache.write_table方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: QCDataSizeTests

# 需要导入模块: from opus_core.store.attribute_cache import AttributeCache [as 别名]
# 或者: from opus_core.store.attribute_cache.AttributeCache import write_table [as 别名]
class QCDataSizeTests(opus_unittest.OpusTestCase):
    def setUp(self):
        self.temp_dir = tempfile.mkdtemp(prefix='opus_tmp_attribute_cache')
        self.table_name = 'test_table'
        self.storage = AttributeCache(self.temp_dir)
    
    def tearDown(self):
        if os.path.exists(self.temp_dir):
            rmtree(self.temp_dir)
    
    def test_detect(self):
        # create cache where a table has attributes of different length,
        # namely size 2 in 1980 and size 3 in 1979 
        SimulationState().set_current_time(1980)
        table_data = {'int_column': np.array([100, 70], dtype="int32"),
                      'bool_column': np.array([False, True])}
        # file name will be e.g. 'int_column.li4' for a little-endian machine
        self.storage.write_table(self.table_name, table_data)
        SimulationState().set_current_time(1979)
        table_data = {'flt_column': np.array([10, 70, 5.7], dtype="float32")}
        self.storage.write_table(self.table_name, table_data)        
        res = DatasetSizeModel(self.temp_dir).run()
        SimulationState().set_current_time(2000)
        self.assertEqual(res.sum(), 1)
        # reset time to the original one
        self.assertEqual(SimulationState().get_current_time(), 2000)
开发者ID:,项目名称:,代码行数:28,代码来源:

示例2: setUp

# 需要导入模块: from opus_core.store.attribute_cache import AttributeCache [as 别名]
# 或者: from opus_core.store.attribute_cache.AttributeCache import write_table [as 别名]
 def setUp(self):
     self.temp_dir = tempfile.mkdtemp(prefix='opus_tmp_attribute_cache')
     table_name = 'test_table'
     storage = AttributeCache(self.temp_dir)
     self.temp_refdir = tempfile.mkdtemp(prefix='opus_tmp_reference_cache')
     refstorage = AttributeCache(self.temp_refdir)
     # Create two caches with the same table but with different attributes.
     # The simulation cache has two years
     SimulationState().set_current_time(2010)
     table_data = {'int_column': np.array([100, 70], dtype="int32"),
                   'bool_column': np.array([False, True])}
     storage.write_table(table_name, table_data)
     SimulationState().set_current_time(2000)
     table_data = {'flt_column': np.array([10, 70], dtype="float32")}
     storage.write_table(table_name, table_data)
     # create reference cache
     SimulationState().set_current_time(2005)
     table_data = {'str_column': np.array(['a', 'b']),
                   'bool_column': np.array([False, True])}
     refstorage.write_table(table_name, table_data)
     # create another simulation cache with a table of different length
     self.temp_dir2 = tempfile.mkdtemp(prefix='opus_tmp_attribute_cache2')
     storage = AttributeCache(self.temp_dir2)
     SimulationState().set_current_time(2010)
     table_data = {'str_column': np.array(['a', 'b', 'c']),
                   'bool_column': np.array([False, True, True])}
     storage.write_table(table_name, table_data)
开发者ID:,项目名称:,代码行数:29,代码来源:

示例3: test

# 需要导入模块: from opus_core.store.attribute_cache import AttributeCache [as 别名]
# 或者: from opus_core.store.attribute_cache.AttributeCache import write_table [as 别名]
 def test(self):
     # Set up a test cache
     storage = AttributeCache(cache_directory=self._temp_dir)
     SimulationState().set_current_time(2000)
     
     table_name = 'foo'
     
     values = {
         'attribute1': array([1,2,3], dtype=int32),
         'attribute2': array([4,5,6], dtype=int32),
         }
     
     storage.write_table(table_name, values)
         
     table_dir = os.path.join(self._temp_dir, '2000', table_name)
     self.assert_(os.path.exists(table_dir))
     
     actual = set(os.listdir(table_dir))
     expected = set(['attribute1.%(endian)si4' % replacements, 'attribute2.%(endian)si4' % replacements])
     self.assertEqual(expected, actual)
     
     exporter = ExportCacheToDbfTableCommand(
     cache_directory = self._temp_dir,
     year = '2000',
     table_name = table_name,
     dbf_directory = self._temp_dir,
     decimalcount = 4,
     )
     exporter.execute()
     
     out_storage = dbf_storage(self._temp_dir)
     
     db = _dbf_class(out_storage._get_file_path_for_table(table_name))
     length = max([len(values[key]) for key in values.keys()])
     i = 0
     field_type = {}
     for name, type in [field.fieldInfo()[:2] for field in db.header.fields]:
         field_type[name] = type
     for rec in db:
         for key in values.keys():
             if field_type[key.upper()] is 'F':
                 self.assertAlmostEqual(values[key][i], rec[key], 4)
             else:
                 self.assertEqual(values[key][i], rec[key])
         i = i + 1
     self.assertEquals(length, i, msg="More values expected than the dbf file contains")
     db.close()
开发者ID:christianurich,项目名称:VIBe2UrbanSim,代码行数:49,代码来源:export_cache_to_dbf_table_command.py

示例4: MergeCache

# 需要导入模块: from opus_core.store.attribute_cache import AttributeCache [as 别名]
# 或者: from opus_core.store.attribute_cache.AttributeCache import write_table [as 别名]
class MergeCache(Model):
    """Merge multiple years of one cache directory into a single one that can be used 
    for example for a warm start."""
    def __init__(self, directory):
        self.storage = AttributeCache(directory)
    
    def run(self, year, cleanup_settings={}):
        SimulationState().set_current_time(year)
        tables = self.storage.get_table_names()
        # cleanup
        for table in tables:
            tabdata = self.storage.load_table(table)
            if table in cleanup_settings.keys():
                for attr in cleanup_settings[table]:
                    if attr in tabdata.keys():
                        logger.log_status('Deleting attribute %s in %s.' % (attr, table))
                        del tabdata[attr]
            self.storage.write_table(table, tabdata)
        logger.log_status('Deleting all computed tables.')
        self.storage.delete_computed_tables()
        logger.log_status('Cache directory merged into %s' % year) 
开发者ID:,项目名称:,代码行数:23,代码来源:

示例5: setUp

# 需要导入模块: from opus_core.store.attribute_cache import AttributeCache [as 别名]
# 或者: from opus_core.store.attribute_cache.AttributeCache import write_table [as 别名]
    def setUp(self):
        household_data = {
            'household_id':  array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
            'blockgroup_id': array([1, 1, 1, 1, 2, 2, 2, 2, 2, 3]),
        }
        fraction_data = {
            'fraction_id':                array([1,    2,    3,   4,   5,   6,   6]), #unused, but necessary to use dataset_pool to get data
            'blockgroup_id':              array([1,    1,    1,   2,   2,   2,   3]),
            'zone_id':                    array([1,    2,    3,   3,   4,   5,   6]),
            'fraction':                   array([0.25, 0.25, 0.5, 0.2, 0.4, 0.4, 1.0])
            }
        blockgroup_data = {
            #unused by the model, for result verification only
            'blockgroup_id':              array([1,    2,   3]),
            }
        zone_data = {
            #unused by the model, for result verification only
            'zone_id':                    array([1,    2,    3,   4,  5,  6]),
            }

        self.tmp_dir = tempfile.mkdtemp(prefix='urbansim_tmp')

        SimulationState().set_cache_directory(self.tmp_dir)
        attribute_cache = AttributeCache()
        self.dataset_pool = SessionConfiguration(new_instance=True,
                                                 package_order=['urbansim', 'opus_core'],
                                                 in_storage=attribute_cache).get_dataset_pool()        

        #storage = StorageFactory().get_storage('flt_storage', storage_location=self.tmp_dir)
        attribute_cache.write_table(table_name = 'households', table_data = household_data)
        attribute_cache.write_table(table_name = 'fractions', table_data = fraction_data)
        attribute_cache.write_table(table_name = 'blockgroups', table_data = blockgroup_data)
        attribute_cache.write_table(table_name = 'zones', table_data = zone_data)
        
        #self.dataset_pool = DatasetPool(storage = storage, package_order = ['urbansim_parcel', 'urbansim', 'opus_core'])
        self.household = self.dataset_pool.get_dataset('household')
        self.fraction = self.dataset_pool.get_dataset('fraction')
        self.blockgroup = self.dataset_pool.get_dataset('blockgroup')
        self.zone = self.dataset_pool.get_dataset('zone')        
开发者ID:christianurich,项目名称:VIBe2UrbanSim,代码行数:41,代码来源:monte_carlo_assignment_model.py

示例6: Tests

# 需要导入模块: from opus_core.store.attribute_cache import AttributeCache [as 别名]
# 或者: from opus_core.store.attribute_cache.AttributeCache import write_table [as 别名]
class Tests(opus_unittest.OpusTestCase):
    def setUp(self):
        building_data = {
            "building_id": array([1, 2, 3, 4, 5, 6, 7, 8]),
            "parcel_id": array([1, 2, 2, 3, 4, 4, 5, 5]),
            "non_residential_sqft": array([6, 2, 3, 6, 1, 2, 5, 0]),
            "residential_units": array([0, 0, 0, 0, 0, 0, 1, 1]),
            "price_per_unit": array([50, 21, 32, 15, 60, 90, 100, 200]),
        }
        parcel_data = {
            "parcel_id": array([1, 2, 3, 4, 5]),
            "generic_land_use_type_id": array([6, 6, 3, 4, 1]),
            "raz_id": array([3, 4, 5, 5, 6]),
        }
        job_data = {
            "job_id": array([1, 2, 3, 4, 5, 6, 7, 8]),
            "building_id": array([1, 1, 2, 3, 6, 1, 6, 4]),
            #'parcel_id':   array([ 1, 1, 2, 2, 4, 1, 4, 3]),
            #'raz_id':      array([ 3, 3, 4, 4, 5, 3, 5, 5]),
            "sector_id": array([13, 12, 13, 12, 13, 13, 12, 13]),
            "dummy_id": array([1, 2, 3, 4, 5, 6, 7, 8]),
        }

        self.tmp_dir = tempfile.mkdtemp(prefix="urbansim_tmp")

        SimulationState().set_cache_directory(self.tmp_dir)
        self.attribute_cache = AttributeCache()
        self.dataset_pool = SessionConfiguration(
            new_instance=True, package_order=["urbansim", "opus_core"], in_storage=self.attribute_cache
        ).get_dataset_pool()

        # storage = StorageFactory().get_storage('flt_storage', storage_location=self.tmp_dir)
        self.attribute_cache.write_table(table_name="buildings", table_data=building_data)
        self.attribute_cache.write_table(table_name="parcels", table_data=parcel_data)
        #        self.attribute_cache.write_table(table_name = 'households', table_data = household_data)
        self.attribute_cache.write_table(table_name="jobs", table_data=job_data)
        #        self.attribute_cache.write_table(table_name = 'persons', table_data = person_data)
        #        self.attribute_cache.write_table(table_name = 'refinements', table_data = refinement_data)

        # self.dataset_pool = DatasetPool(storage = storage, package_order = ['urbansim_parcel', 'urbansim', 'opus_core'])
        #        self.refinement = self.dataset_pool.get_dataset('refinement')
        self.jobs = self.dataset_pool.get_dataset("job")
        #        self.persons = self.dataset_pool.get_dataset('person')
        #        self.hhs = self.dataset_pool.get_dataset('household')
        self.buildings = self.dataset_pool.get_dataset("building")
        # self.buildings.compute_variables('raz_id=building.disaggregate(parcel.raz_id)', self.dataset_pool)

    def tearDown(self):
        shutil.rmtree(self.tmp_dir)

    def test_add_and_remove_agents(self):
        """
        """
        scheduled_events_data = {
            "year": array([2000, 2000, 2000, 2000, 2000]),
            "action": array(["remove", "remove", "add", "add", "target"]),
            "amount": array([1, 1, 4, 3, 7]),
            "sector_id": array([13, 12, -1, 11, 12]),
            "building_id": array([-1, -1, -1, 8, -1]),
            "raz_id": array([3, 5, 5, -1, -1]),
        }

        #        self.attribute_cache.write_table(table_name = 'scheduled_events', table_data = scheduled_events_data)
        #        events_dataset = self.dataset_pool.get_dataset('scheduled_event')

        storage = StorageFactory().get_storage("dict_storage")
        storage.write_table(table_name="events", table_data=scheduled_events_data)
        events_dataset = Dataset(in_storage=storage, in_table_name="events", id_name=[])

        model = ScheduledEventsModel(self.jobs, scheduled_events_dataset=events_dataset)
        model.run(year=2000, dataset_pool=self.dataset_pool)

        # check that there are indeed 50000 total households after running the model
        results = self.jobs.size()
        should_be = 18
        self.assertEqual(should_be, results, "Error, should_be: %s, but result: %s" % (should_be, results))

        # examine each action in turn:
        results = logical_and(self.jobs.get_attribute("sector_id") == 13, self.jobs.get_attribute("raz_id") == 3).sum()
        should_be = 2 - 1
        self.assertEqual(should_be, results, "Error, should_be: %s, but result: %s" % (should_be, results))

        results = logical_and(self.jobs.get_attribute("sector_id") == 12, self.jobs.get_attribute("raz_id") == 5).sum()
        should_be = 1 - 1
        self.assertEqual(should_be, results, "Error, should_be: %s, but result: %s" % (should_be, results))

        results = (self.jobs.get_attribute("raz_id") == 5).sum()
        should_be = 3 - 1 + 4
        self.assertEqual(should_be, results, "Error, should_be: %s, but result: %s" % (should_be, results))

        results = logical_and(
            self.jobs.get_attribute("sector_id") == 11, self.jobs.get_attribute("building_id") == 8
        ).sum()
        should_be = 0 + 3
        self.assertEqual(should_be, results, "Error, should_be: %s, but result: %s" % (should_be, results))

        results = (self.jobs.get_attribute("sector_id") == 12).sum()
        should_be = 7
        self.assertEqual(should_be, results, "Error, should_be: %s, but result: %s" % (should_be, results))

#.........这里部分代码省略.........
开发者ID:psrc,项目名称:urbansim,代码行数:103,代码来源:scheduled_events_model.py

示例7: setUp

# 需要导入模块: from opus_core.store.attribute_cache import AttributeCache [as 别名]
# 或者: from opus_core.store.attribute_cache.AttributeCache import write_table [as 别名]
    def setUp(self):
        building_data = {
            'building_id': array([1, 2, 3, 4, 5, 6, 7, 8]),
            'parcel_id':   array([1, 2, 2, 3, 4, 4, 5, 5]),
            'non_residential_sqft': \
                           array([6, 2, 3, 6, 1, 2, 5, 0]),
            'residential_units': \
                           array([0, 0, 0, 0, 0, 0, 1, 1])
            }
        parcel_data = {
            'parcel_id':                array([1, 2, 3, 4, 5]),
            'generic_land_use_type_id': array([6, 6, 3, 4, 1]),
            'raz_id':                   array([3, 4, 5, 5, 6])
            }
        job_data = {
            'job_id':      array([ 1, 2, 3, 4, 5, 6, 7, 8]),
            'building_id': array([ 1, 1, 2, 3, 6, 1, 6, 4]),
            'sector_id':   array([13,12,13,12,13,13,12,13]),
            'dummy_id':    array([ 1, 2, 3, 4, 5, 6, 7, 8])
        }
        household_data = {
            'household_id': array([1, 2]),
            'building_id':  array([7, 8]),
            'persons':      array([3, 4]),
        }
        person_data = {
            'person_id':    array([ 1,  2,  3,  4,  5,  6,  7]),
            'household_id': array([ 1,  1,  1,  2,  2,  2,  2]),
            'job_id':       array([ 2,  1, -1, -1,  3,  4,  7])
        }
        
        refinement_data = {
            'refinement_id': arange(1, 8),
            'year':          array([2021,2021,2021,2022, 2023, 2024, 2024]),
            'transaction_id':array([1,      1,   1,   2,    3,    1,    1]),
            'action':        array(['subtract', 'subtract', 'add', 'target', 'add', 'add', 'set_value']),
            'amount':        array([2,      1,   4,   7,    1,      1,    -1]),
            'agent_dataset': array(['job',
                                    'job',
                                    'job',
                                    'household',
                                    'household',
                                    'household',
                                    'person'
                                      ]),
            'agent_expression': array(['job.sector_id==13',
                                       'job.sector_id==13',
                                       '',
                                       'household.household_id>0',
                                       'household.persons>5',
                                       'household.persons==3',
                                       'person.job_id'
                                      ]),
            'location_expression': array(['urbansim.building.raz_id==3',
                                          'urbansim.building.raz_id==4',
                                          '(urbansim.building.raz_id==5) * (building.disaggregate(parcel.generic_land_use_type_id)==4)',
                                          'urbansim.building.raz_id==6',
                                          'urbansim.building.raz_id==6',
                                          'urbansim.building.raz_id==6',
                                          'household.refinement_id==6'
                                          ]),
            'location_capacity_attribute':array(['',
                                                 'non_residential_sqft',
                                                 'non_residential_sqft',
                                                 'residential_units',
                                                 'residential_units',
                                                 '',
                                                 ''
                                              ])
        }
        self.tmp_dir = tempfile.mkdtemp(prefix='urbansim_tmp')

        SimulationState().set_cache_directory(self.tmp_dir)
        attribute_cache = AttributeCache()
        self.dataset_pool = SessionConfiguration(new_instance=True,
                                                 package_order=['urbansim', 'opus_core'],
                                                 in_storage=attribute_cache).get_dataset_pool()        

        #storage = StorageFactory().get_storage('flt_storage', storage_location=self.tmp_dir)
        attribute_cache.write_table(table_name = 'buildings', table_data = building_data)
        attribute_cache.write_table(table_name = 'parcels', table_data = parcel_data)
        attribute_cache.write_table(table_name = 'households', table_data = household_data)
        attribute_cache.write_table(table_name = 'jobs', table_data = job_data)
        attribute_cache.write_table(table_name = 'persons', table_data = person_data)
        attribute_cache.write_table(table_name = 'refinements', table_data = refinement_data)
        
        #self.dataset_pool = DatasetPool(storage = storage, package_order = ['urbansim_parcel', 'urbansim', 'opus_core'])
        self.refinement = self.dataset_pool.get_dataset('refinement')
        self.jobs = self.dataset_pool.get_dataset('job')
        self.persons = self.dataset_pool.get_dataset('person')
        self.hhs = self.dataset_pool.get_dataset('household')
        self.buildings = self.dataset_pool.get_dataset('building')
开发者ID:psrc,项目名称:urbansim,代码行数:94,代码来源:refinement_model.py

示例8: Tests

# 需要导入模块: from opus_core.store.attribute_cache import AttributeCache [as 别名]
# 或者: from opus_core.store.attribute_cache.AttributeCache import write_table [as 别名]
class Tests(opus_unittest.OpusTestCase):
    """unittest"""        
    def setUp(self, attribute_cache=True):
        hh_data = {
            'household_id':  array([1,   2,  3,  4]),
            'building_id':   array([11, 22, 33, 22]),
            'size':          array([4,   3,  2,  1]),
            'income':        array([51, 52, 53, 54])*1000,
            'keep':          array([4.1, 4.2, 4.3, 4.4]),
            }
        p_data = {
            'person_id':    array([ 1,  2,  3,  5,  6,  7,  8,  9, 10]),
            'household_id': array([ 1,  1,  1,  2,  2,  3,  3,  3,  4]),
            'age':          array([75, 71, 29, 56, 16, 22, 20, 96, 88]),
            }
        if attribute_cache:
            self.tmp_dir = tempfile.mkdtemp(prefix='urbansim_tmp')
            SimulationState().set_cache_directory(self.tmp_dir)
            self.attribute_cache = AttributeCache()
            self.dataset_pool = SessionConfiguration(new_instance=True,
                                     package_order=['urbansim', 'opus_core'],
                                     in_storage=self.attribute_cache
                                    ).get_dataset_pool()        

            self.attribute_cache.write_table(table_name='households',
                                             table_data=hh_data)
            self.attribute_cache.write_table(table_name='persons',
                                             table_data=p_data)
            self.hh_ds = self.dataset_pool.get_dataset('household')
            self.p_ds = self.dataset_pool.get_dataset('person')
        else:
            storage = StorageFactory().get_storage('dict_storage')
            storage.write_table(table_name='households',
                                table_data=hh_data)
            self.hh_ds = Dataset(in_storage=storage, 
                                     in_table_name='households',
                                     dataset_name='household')
            storage.write_table(table_name='persons',
                                table_data=p_data)
            self.p_ds = Dataset(in_storage=storage, 
                                     in_table_name='persons',
                                     dataset_name='person')

        self.dmgh_data_dir = tempfile.mkdtemp(prefix='urbansim_tmp')
        self.dmgh_data_file = os.path.join(self.dmgh_data_dir, 
                                           'demographic_data.h5')
        
        out_fh = h5py.File(self.dmgh_data_file, 'w')

        n_hhs = 5
        hh_dtype = {'names':['year', 'household_id', 'income', 'head_person_id'],
                 'formats':['i4', 'i4', 'f8', 'i4']}
        hhdata = out_fh.create_dataset('household', shape=(n_hhs, ), dtype=hh_dtype, 
                                       compression='gzip', compression_opts=9)
        
        hhs = [(2000, 5, 65000.0, 9),
               (2000, 1, 61000.0, 3),
               (2000, 2, 62000.0, 4),
               (2000, 3, 63000.0, 7),
               (2001, 1, 71000.0, 3)]
        hhdata[:] = array(hhs, dtype=hh_dtype)

        n_ps = 16
        ps_dtype = {'names':['year', 'person_id', 'household_id', 'age'],
                    'formats':['i4', 'i4', 'i4', 'i4']}
        psdata = out_fh.create_dataset('person', shape=(n_ps, ), dtype=ps_dtype, 
                                       compression='gzip', compression_opts=9)
        
        ps =  [(2000, 1, 1, 76),
               (2000, 2, 1, 72),
               (2000, 3, 1, 30),
               (2000, 4, 2, -1),
               (2000, 5, 2, 57),
               (2000, 6, 2, 17),
               (2000, 9, 5, 67),
               (2000,10, 5, 71),
               (2000, 7, 3, 23),
               (2000, 8, 3, 21),
               (2000,81, 3, 2),
               (2001, 1, 1, 77),
               (2001, 2, 1, 73),
               (2001, 3, 1, 31),
               (2001, 4, 1, 35),
               (2001,31, 1, 1)]
        psdata[:] = array(ps, dtype=ps_dtype)

        dataset_names = ['household', 'person']
        for dataset_name in dataset_names:
            for year in unique(out_fh[dataset_name][:, 'year']):
                year_str = str(year)
                group = out_fh.get(year_str, None)
                if group is None:
                    group = out_fh.create_group(year_str)

                is_year = out_fh[dataset_name][:, 'year'] == year
                group.create_dataset(dataset_name, data=out_fh[dataset_name][is_year])

            del out_fh[dataset_name]
        out_fh.close()

#.........这里部分代码省略.........
开发者ID:psrc,项目名称:urbansim,代码行数:103,代码来源:external_demographic_model.py


注:本文中的opus_core.store.attribute_cache.AttributeCache.write_table方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。