当前位置: 首页>>代码示例>>Python>>正文


Python SessionConfiguration.add_datasets_if_not_included方法代码示例

本文整理汇总了Python中opus_core.session_configuration.SessionConfiguration.add_datasets_if_not_included方法的典型用法代码示例。如果您正苦于以下问题:Python SessionConfiguration.add_datasets_if_not_included方法的具体用法?Python SessionConfiguration.add_datasets_if_not_included怎么用?Python SessionConfiguration.add_datasets_if_not_included使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在opus_core.session_configuration.SessionConfiguration的用法示例。


在下文中一共展示了SessionConfiguration.add_datasets_if_not_included方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: estimate

# 需要导入模块: from opus_core.session_configuration import SessionConfiguration [as 别名]
# 或者: from opus_core.session_configuration.SessionConfiguration import add_datasets_if_not_included [as 别名]
    def estimate(self, spec_var=None, spec_py=None,
            submodel_string = "workers", 
            agent_sample_rate=0.005, alt_sample_size=None):
        """

        """
        CLOSE = 0.001
        sampler = "opus_core.samplers.weighted_sampler"
        if alt_sample_size==None:
            sampler = None
        
        date_time_str=strftime("%Y_%m_%d__%H_%M", localtime())
        agent_sample_rate_str = "__ASR_" + str(agent_sample_rate)
        alt_sample_size_str = "_ALT_" + str(alt_sample_size)
        info_file = date_time_str + agent_sample_rate_str + alt_sample_size_str + "__info.txt"
        logger.enable_file_logging(date_time_str + agent_sample_rate_str + alt_sample_size_str + "__run.txt")
        logger.enable_memory_logging()
        logger.log_status("Constrained Estimation with agent sample rate of %s and alternatvie sample size %s\n" % \
                          (agent_sample_rate, alt_sample_size))
                
        t1 = time()
        
        SimulationState().set_current_time(2000)

        self.nbs = SessionConfiguration().get_dataset_from_pool("neighborhood")
        self.hhs = SessionConfiguration().get_dataset_from_pool('household')

        depts, lambda_value = compute_lambda(self.nbs)
        supply, vacancy_rate = compute_supply_and_vacancy_rate(self.nbs, depts, lambda_value)
        self.nbs.set_values_of_one_attribute("supply", supply)
        dataset_pool = SessionConfiguration().get_dataset_pool()
        dataset_pool.add_datasets_if_not_included({'vacancy_rate': vacancy_rate,
                                                   'sample_rate':agent_sample_rate
                                                   })
        SessionConfiguration()["CLOSE"] = CLOSE
        SessionConfiguration()['info_file'] = info_file
        
        if self.save_estimation_results:
            out_storage = StorageFactory().build_storage_for_dataset(type='sql_storage', 
                storage_location=self.out_con)
        
        if spec_py is not None:
            reload(spec_py)
            spec_var = spec_py.specification
        
        if spec_var is not None:
            self.specification = load_specification_from_dictionary(spec_var)
        else:
            in_storage = StorageFactory().build_storage_for_dataset(type='sql_storage', 
                storage_location=self.in_con)
            self.specification = EquationSpecification(in_storage=in_storage)
            self.specification.load(in_table_name="household_location_choice_model_specification")

        #submodel_string = "workers"
        
        seed(71) # was: seed(71,110)
        self.model_name = "household_location_choice_model"

        model = HouseholdLocationChoiceModelCreator().get_model(location_set=self.nbs, 
                                                                submodel_string=submodel_string,
                                                                sampler = sampler,
                                                                estimation_size_agents = agent_sample_rate * 100/20,    
                                                                # proportion of the agent set that should be used for the estimation,
                                                                # 
                                                                sample_size_locations = alt_sample_size,  # choice set size (includes current location)
                                                                compute_capacity_flag = True,
                                                                probabilities = "opus_core.mnl_probabilities",
                                                                choices = "urbansim.lottery_choices",
                                                                run_config = Resources({"capacity_string":"supply"}), 
                                                                estimate_config = Resources({"capacity_string":"supply","compute_capacity_flag":True}))

        #TODO: since households_for_estimation currently is the same as households, create_households_for_estimation
        #becomes unnecesarry
        #agent_set, agents_index_for_estimation  =  create_households_for_estimation(self.hhs, self.in_con)
        agent_set = self.hhs; agents_index_for_estimation = arange(self.hhs.size())
        self.result = model.estimate(self.specification, 
                                     agent_set=agent_set, 
                                     agents_index=agents_index_for_estimation, 
                                     debuglevel=self.debuglevel,
                                     procedure="urbansim.constrain_estimation_bhhh_two_loops" ) #"urbansim.constrain_estimation_bhhh"

        #save estimation results
        if self.save_estimation_results:    
            self.save_results(out_storage)
            
        logger.log_status("Estimation done. " + str(time()-t1) + " s")
开发者ID:,项目名称:,代码行数:88,代码来源:

示例2: estimate

# 需要导入模块: from opus_core.session_configuration import SessionConfiguration [as 别名]
# 或者: from opus_core.session_configuration.SessionConfiguration import add_datasets_if_not_included [as 别名]
    def estimate(self, spec_var=None, spec_py=None,
                 movers_index = None,
                 submodel_string = "", 
                 alt_sample_size=None,
                 sampler = "opus_core.samplers.weighted_sampler",
                 weight_string = "supply",
                 aggregate_demand = False,
                 submarket_definition = ('zone', 'building_type_id'),
                 sample_size_from_each_stratum = 50
                 ):        
        """

        """
        
        t1 = time()        
        SimulationState().set_current_time(2000)

        dataset_pool=SessionConfiguration().get_dataset_pool()
        
        buildings = dataset_pool.get_dataset("building")
        agent_set = dataset_pool.get_dataset('household')
        #buildings.load_dataset()

        submarket_geography = dataset_pool.get_dataset(submarket_definition[0])
        intermediates = '[]'
        if submarket_geography.dataset_name == 'zone':
            intermediates = '[parcel]'
        elif submarket_geography.dataset_name == 'faz':
            intermediates = '[zone, parcel]'
        elif submarket_geography.dataset_name == 'large_area':
            intermediates = '[faz, zone, parcel]'
        
        submarket_id_expression = 'building.disaggregate(%s.%s, intermediates=%s) * 100' % \
                                                (submarket_geography.dataset_name, submarket_geography.get_id_name()[0],
                                                 intermediates)
        submarket_variables = ['%s=numpy.ceil(submarket.submarket_id / 100)' % submarket_geography.get_id_name()[0]]

        if submarket_definition[1] == 'residential_building_type_id':
            set_residential_building_types(dataset_pool.get_dataset("building_type"), dataset_pool.get_dataset("building"))
        if submarket_definition[1] != '':
            submarket_id_expression = submarket_id_expression + ' + building.%s'  % submarket_definition[1] 
            submarket_variables.append(submarket_definition[1] + '=submarket.submarket_id % 100' ) 
            
        submarkets = define_submarket(buildings, 
                                      submarket_id_expression,
                                      #"urbansim_parcel.building.zone_id*100 + building.residential_building_type_id",
                                      #"building.disaggregate(faz.large_area_id, intermediates=[zone, parcel]) * 100 + building.residential_building_type_id",
                                      compute_variables=submarket_variables + [
                                          "residential_units=submarket.aggregate(building.residential_units)",
                                          "number_of_buildings_with_non_zero_units=submarket.aggregate(building.residential_units > 0 )",
                                          "number_of_surveyed_households=submarket.aggregate(household.household_id > 5000000, intermediates=[building])",                                                     
                                                     ],
                                      #filter = 'numpy.logical_and(submarket.number_of_surveyed_households > 0, submarket.residential_units>0)',
                                      #filter = 'submarket.supply > 0',
                                      #"psrc_parcel.building.large_area_id*100 + building.residential_building_type_id",
                                      #compute_variables=['residential_building_type_id=submarket.submarket_id % 100',
                                                         #'large_area_id=numpy.ceil(submarket.submarket_id / 100)']
                                      #"psrc_parcel.building.large_area_id",
                                      #compute_variables=[#'residential_building_type_id=submarket.submarket_id % 100',
                                                         #'large_area_id=numpy.ceil(submarket.submarket_id)']

                                  )

        dataset_pool.add_datasets_if_not_included({'submarket':submarkets})        
        compute_lambda_and_supply(buildings, agent_set, movers_index, submarkets)

        submarket_filter = 'submarket.supply > 0'
        if submarket_filter is not None:
            from numpy import logical_not
            submarkets.remove_elements(index= where( logical_not(submarkets.compute_variables(submarket_filter)) )[0])
            submarkets.touch_attribute(submarkets.get_id_name()[0])
            buildings.touch_attribute(submarkets.get_id_name()[0])
            
        if self.save_estimation_results:
            out_storage = StorageFactory().build_storage_for_dataset(type='sql_storage', 
                storage_location=self.out_con)
        
        if spec_py is not None:
            reload(spec_py)
            spec_var = spec_py.specification
        
        if spec_var is not None:
            self.specification = load_specification_from_dictionary(spec_var)
        else:
            in_storage = StorageFactory().build_storage_for_dataset(type='sql_storage', 
                                                                    storage_location=self.in_con)
            self.specification = EquationSpecification(in_storage=in_storage)
            self.specification.load(in_table_name="household_location_choice_model_specification")
        
        self.model_name = "household_location_choice_model"

        agent_set, agents_index_for_estimation = get_households_for_estimation(agent_set,
                                                                               AttributeCache(),
                                                                               "households_for_estimation",
                                                                               exclude_condition="household.disaggregate(submarket.submarket_id, intermediates=[building])<=0",
                                                                           )
        agent_set.compute_variables("submarket_id=household.disaggregate(building.submarket_id)")
        agent_sample_rate = agents_index_for_estimation.size / float(movers_index.size)
        dataset_pool.add_datasets_if_not_included({'sample_rate': agent_sample_rate })

#.........这里部分代码省略.........
开发者ID:christianurich,项目名称:VIBe2UrbanSim,代码行数:103,代码来源:estimation_HLCM_with_price.py


注:本文中的opus_core.session_configuration.SessionConfiguration.add_datasets_if_not_included方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。