本文整理汇总了Python中opus_core.datasets.dataset.DatasetSubset.column_values方法的典型用法代码示例。如果您正苦于以下问题:Python DatasetSubset.column_values方法的具体用法?Python DatasetSubset.column_values怎么用?Python DatasetSubset.column_values使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类opus_core.datasets.dataset.DatasetSubset
的用法示例。
在下文中一共展示了DatasetSubset.column_values方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: run
# 需要导入模块: from opus_core.datasets.dataset import DatasetSubset [as 别名]
# 或者: from opus_core.datasets.dataset.DatasetSubset import column_values [as 别名]
def run(self, n=500,
realestate_dataset_name = 'building',
current_year=None,
occupied_spaces_variable="occupied_spaces",
total_spaces_variable="total_spaces",
minimum_spaces_attribute="minimum_spaces",
within_parcel_selection_weight_string=None,
within_parcel_selection_n=0,
within_parcel_selection_compete_among_types=False,
within_parcel_selection_threshold=75,
within_parcel_selection_MU_same_weight=False,
within_parcel_selection_transpose_interpcl_weight=True,
run_config=None,
debuglevel=0):
"""
run method of the Development Project Proposal Sampling Model
**Parameters**
**n** : int, sample size for each iteration
sample n proposals at a time, which are then evaluated one by one until the
target vacancies are satisfied or proposals are running out
**realestate_dataset_name** : string, name of real estate dataset
**current_year**: int, simulation year. If None, get value from SimulationState
**occupied_spaces_variable** : string, variable name for calculating how much spaces are currently occupied
It can either be a variable for real_estate dataset that returns
the amount spaces being occupied or a target_vacancy attribute
that contains the name of real_estate variables.
**total_spaces_variable** : string, variable name for calculating total existing spaces
**Returns**
**proposal_set** : indices to proposal_set that are accepted
**demolished_buildings** : buildings to be demolished for re-development
"""
self.accepted_proposals = []
self.demolished_buildings = [] #id of buildings to be demolished
if self.proposal_set.n <= 0:
logger.log_status("The size of proposal_set is 0; no proposals to consider, skipping DPPSM.")
return (self.proposal_set, self.demolished_buildings)
target_vacancy = self.dataset_pool.get_dataset('target_vacancy')
if current_year is None:
year = SimulationState().get_current_time()
else:
year = current_year
this_year_index = where(target_vacancy['year']==year)[0]
target_vacancy_for_this_year = DatasetSubset(target_vacancy, this_year_index)
if target_vacancy_for_this_year.size() == 0:
raise IOError, 'No target vacancy defined for year %s.' % year
## current_target_vacancy.target_attribute_name = 'target_vacancy_rate'
## each column provides a category for which a target vacancy is specified
self.column_names = list(set( target_vacancy.get_known_attribute_names() ) - \
set( [ target_vacancy.target_attribute_name,
'year', '_hidden_id_', minimum_spaces_attribute,
occupied_spaces_variable, total_spaces_variable
] )
)
self.column_names.sort(reverse=True)
## buildings table provides existing stocks
self.realestate_dataset = self.dataset_pool.get_dataset(realestate_dataset_name)
occupied_spaces_variables = [occupied_spaces_variable]
total_spaces_variables = [total_spaces_variable]
if occupied_spaces_variable in target_vacancy_for_this_year.get_known_attribute_names():
occupied_spaces_variables += unique(target_vacancy_for_this_year[occupied_spaces_variable]).tolist()
if total_spaces_variable in target_vacancy_for_this_year.get_known_attribute_names():
total_spaces_variables += unique(target_vacancy_for_this_year[total_spaces_variable]).tolist()
self._compute_variables_for_dataset_if_needed(self.realestate_dataset, self.column_names + occupied_spaces_variables + total_spaces_variables)
self._compute_variables_for_dataset_if_needed(self.proposal_component_set, self.column_names + total_spaces_variables)
self.proposal_set.compute_variables(["urbansim_parcel.development_project_proposal.number_of_components",
"urbansim_parcel.development_project_proposal.land_area_taken"],
dataset_pool=self.dataset_pool)
n_column = len(self.column_names)
self.column_names_index = {}
for iname in range(n_column):
self.column_names_index[self.column_names[iname]] = iname
target_vacancy_for_this_year.column_values = target_vacancy_for_this_year.get_multiple_attributes(self.column_names).reshape((-1, n_column))
self.realestate_dataset.column_values = self.realestate_dataset.get_multiple_attributes(self.column_names).reshape((-1, n_column))
self.proposal_component_set.column_values = self.proposal_component_set.get_multiple_attributes(self.column_names).reshape((-1, n_column))
#defaults, can be changed later by spaces_variable specified in target_vacancy rates
self.realestate_dataset.total_spaces = self.realestate_dataset[total_spaces_variable]
self.proposal_component_set.total_spaces = self.proposal_component_set[total_spaces_variable]
self.realestate_dataset.occupied_spaces = self.realestate_dataset[occupied_spaces_variable]
#.........这里部分代码省略.........