本文整理汇总了Python中optimizer.Optimizer.load_games方法的典型用法代码示例。如果您正苦于以下问题:Python Optimizer.load_games方法的具体用法?Python Optimizer.load_games怎么用?Python Optimizer.load_games使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类optimizer.Optimizer
的用法示例。
在下文中一共展示了Optimizer.load_games方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from optimizer import Optimizer [as 别名]
# 或者: from optimizer.Optimizer import load_games [as 别名]
def main(args, profile=False):
db = DataBase(args.games)
results = db.load_game_results(mingames=50)
print('{} games loaded.'.format(len(results)))
players = db.load_players()
optimizer = Optimizer(disp=True)
optimizer.load_games(results)
maxiter = 30 if profile else 0
ratings, f, v = optimizer.run(method='l-bfgs-b', maxiter=maxiter)
if profile:
return
print()
by_rating = []
for iplayer, rating in ratings.items():
print(players[iplayer])
mr = 0
for date, r in sorted(rating.items()):
date = datetime.date.fromtimestamp(date * 24 * 3600)
print(date.isoformat(), r)
if r > mr:
mr = r
by_rating.append((mr, players[iplayer]))
print()
print(f)
print(f.calc(0.2) - f.calc(-0.2))
best = list(sorted(by_rating))[-20:]
for r, p in reversed(best):
print('{:24} {}'.format(p, r))
示例2: test_objective_single_game
# 需要导入模块: from optimizer import Optimizer [as 别名]
# 或者: from optimizer.Optimizer import load_games [as 别名]
def test_objective_single_game(self):
o = Optimizer()
o.load_games([(1, 2, 1, 1)])
v1 = o.create_vars({1: {1: 2200}, 2: {1: 1800}}, [0, -1.01])
v2 = o.create_vars({1: {1: 2200}, 2: {1: 2200}}, [0, -1.01])
v3 = o.create_vars({1: {1: 1800}, 2: {1: 2200}}, [0, -1.01])
(total1, likelihood1, regularization1, smoothness1,
func_hard_reg, _) = o.objective(v1, verbose=True)
self.assertLess(likelihood1, 0)
self.assertTrue(1E-6 < regularization1 < 1)
self.assertEqual(smoothness1, 0)
self.assertTrue(func_hard_reg < 1)
(total2, likelihood2, regularization2, _, _, _) = o.objective(
v2, verbose=True)
self.assertLess(likelihood2, likelihood1)
(total3, likelihood3, regularization3, _, _, _) = o.objective(
v3, verbose=True)
self.assertAlmostEqual(regularization1, regularization3)
self.assertLess(total1 / total2, 0.9)
self.assertLess(total2 / total3, 0.9)
示例3: test_symmetric_wins
# 需要导入模块: from optimizer import Optimizer [as 别名]
# 或者: from optimizer.Optimizer import load_games [as 别名]
def test_symmetric_wins(self):
o = Optimizer(rand_seed=239)
o.load_games([(1, 2, 1, 1), (1, 2, 1, 0), (2, 1, 1, 1), (2, 1, 1, 0)])
rating, f, v = o.run(method='Newton-CG')
self.assertAlmostEqual(
f.calc(convert_rating_diff(rating[1][1] - rating[2][1])), 0.5, 2)
self.assertLess(abs(rating[1][1] - rating[2][1]), 5)
示例4: test_draw
# 需要导入模块: from optimizer import Optimizer [as 别名]
# 或者: from optimizer.Optimizer import load_games [as 别名]
def test_draw(self):
o = Optimizer(rand_seed=239)
o.load_games([(1, 2, 1, 2), (2, 1, 1, 2)])
rating, f, v = o.run(method='cg')
self.assertAlmostEqual(f.calc(0), 0.5, 3)
self.assertAlmostEqual(
f.calc(convert_rating_diff(rating[1][1] - rating[2][1])), 0.5, 2)
self.assertLess(abs(rating[1][1] - rating[2][1]), 5)
示例5: test_objective_time_reg
# 需要导入模块: from optimizer import Optimizer [as 别名]
# 或者: from optimizer.Optimizer import load_games [as 别名]
def test_objective_time_reg(self):
o = Optimizer(rand_seed=239)
o.load_games([(1, 2, 1, 1), (1, 2, 2, 0)])
v = o.create_vars({1: {1: 2200, 2: 1800}, 2: {1: 1800, 2: 2200}},
(0, -1.01))
(total, likelihood, regularization, _, _, _) = o.objective(
v, verbose=True)
self.assertLess(likelihood, 0)
self.assertTrue(1E-6 < regularization < 1)
示例6: test_objective_draw
# 需要导入模块: from optimizer import Optimizer [as 别名]
# 或者: from optimizer.Optimizer import load_games [as 别名]
def test_objective_draw(self):
o = Optimizer(rating_reg=0)
o.load_games([(1, 2, 1, 2), (2, 1, 1, 2)])
v1 = o.create_vars({1: {1: 2200}, 2: {1: 1800}}, [0, -1.01])
v2 = o.create_vars({1: {1: 2000}, 2: {1: 2000}}, [0, -1.01])
v3 = o.create_vars({1: {1: 1800}, 2: {1: 2200}}, [0, -1.01])
self.assertLess(o.objective(v2), o.objective(v1))
self.assertLess(o.objective(v2), o.objective(v3))
示例7: test_objective_symmetric_wins
# 需要导入模块: from optimizer import Optimizer [as 别名]
# 或者: from optimizer.Optimizer import load_games [as 别名]
def test_objective_symmetric_wins(self):
o = Optimizer(rating_reg=0)
o.load_games([(1, 2, 1, 1), (2, 1, 1, 1)])
v1 = o.create_vars({1: {1: 2200}, 2: {1: 1800}}, [0, -1.01])
v2 = o.create_vars({1: {1: 2000}, 2: {1: 2000}}, [0, -1.01])
v3 = o.create_vars({1: {1: 1800}, 2: {1: 2200}}, [0, -1.01])
self.assertLess(o.objective(v2) / o.objective(v1), 0.9)
self.assertLess(o.objective(v2) / o.objective(v3), 0.9)
示例8: test_output_format
# 需要导入模块: from optimizer import Optimizer [as 别名]
# 或者: from optimizer.Optimizer import load_games [as 别名]
def test_output_format(self):
o = Optimizer()
o.load_games(GAMES1)
ratings, f = o.random_solution()
self.assertEqual(len(ratings), 3)
self.assertEqual(list(sorted(ratings.keys())), [1, 2, 3])
for player_rating in ratings.values():
for r in player_rating.values():
self.assertTrue(1000 < r < 3000)
self.assertEqual(list(sorted(ratings[1].keys())), [1, 2])
self.assertEqual(list(sorted(ratings[2].keys())), [1, 3, 4])
self.assertEqual(list(sorted(ratings[3].keys())), [1, 2, 3, 4])
示例9: test_single_game
# 需要导入模块: from optimizer import Optimizer [as 别名]
# 或者: from optimizer.Optimizer import load_games [as 别名]
def test_single_game(self):
o = Optimizer(rand_seed=239)
o.load_games([(1, 2, 1, 1)])
ratings, f, v = o.run()
(total, likelihood, regularization, smoothness,
func_hard_reg, func_soft_reg) = o.objective(v, verbose=True)
self.assertTrue(100 < ratings[1][1] < 4000)
self.assertTrue(100 < ratings[2][1] < 4000)
self.assertGreater(
f.calc(convert_rating_diff(ratings[1][1] - ratings[2][1])), 0.5)
self.assertGreater(ratings[1][1], ratings[2][1])
total = o.objective(v)
示例10: test_gradient_games1
# 需要导入模块: from optimizer import Optimizer [as 别名]
# 或者: from optimizer.Optimizer import load_games [as 别名]
def test_gradient_games1(self):
o = Optimizer(rand_seed=239, time_delta=0.01, func_hard_reg=0,
func_soft_reg=0)
o.load_games(GAMES1)
v = o.init()
grad = o.gradient(v)
for i in range(len(v)):
def ocomp(x):
save_x = v[i]
v[i] = x
res = o.objective(v)
v[i] = save_x
return res
self.assertAlmostEqual(derivative(ocomp, v[i]), grad[i])
示例11: test_time_regularization
# 需要导入模块: from optimizer import Optimizer [as 别名]
# 或者: from optimizer.Optimizer import load_games [as 别名]
def test_time_regularization(self):
o = Optimizer(rand_seed=239)
o.load_games([(1, 2, 1, 1), (2, 1, 1, 0), (1, 2, 2, 0), (2, 1, 2, 1)])
rating, f, v = o.run()
(total1, _, reg, smoothness1, func_hard_reg,
func_soft_reg) = o.objective(v, verbose=True)
self.assertLess(func_hard_reg, 1)
self.assertGreater(smoothness1, 0.001)
self.assertGreater(rating[1][1], rating[1][2])
self.assertLess(rating[2][1], rating[2][2])
self.assertGreater(rating[1][1], rating[2][1])
self.assertLess(rating[1][2], rating[2][2])
prob1 = f.calc(convert_rating_diff(rating[1][1] - rating[2][1]))
self.assertGreater(prob1, 0.51)
prob2 = f.calc(convert_rating_diff(rating[1][2] - rating[2][2]))
self.assertLess(prob2, 0.49)
示例12: test_gradient
# 需要导入模块: from optimizer import Optimizer [as 别名]
# 或者: from optimizer.Optimizer import load_games [as 别名]
def test_gradient(self):
o = Optimizer(func_hard_reg=0, func_soft_reg=0, time_delta=0,
rating_reg=0)
o.load_games([(1, 2, 1, 1)])
v = o.create_vars({1: {1: 2200}, 2: {1: 1800}}, (0, -1.01))
def o0(x):
save_x = v[0]
v[0] = x
res = o.objective(v)
v[0] = save_x
return res
def o1(x):
save_x = v[1]
v[1] = x
res = o.objective(v)
v[1] = save_x
return res
self.assertAlmostEqual(derivative(o0, v[0]), o.gradient(v)[0])
self.assertAlmostEqual(derivative(o1, v[1]), o.gradient(v)[1])
示例13: test_prepare_data
# 需要导入模块: from optimizer import Optimizer [as 别名]
# 或者: from optimizer.Optimizer import load_games [as 别名]
def test_prepare_data(self):
o = Optimizer()
o.load_games(GAMES1)
self.assertEqual(o.nrating_vars_, 9)
示例14: test_games1
# 需要导入模块: from optimizer import Optimizer [as 别名]
# 或者: from optimizer.Optimizer import load_games [as 别名]
def test_games1(self):
o = Optimizer(rand_seed=239)
o.load_games(GAMES1)
rating, f, _ = o.run(method='newton-cg')