本文整理汇总了Python中openquake.hmtk.seismicity.catalogue.Catalogue类的典型用法代码示例。如果您正苦于以下问题:Python Catalogue类的具体用法?Python Catalogue怎么用?Python Catalogue使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Catalogue类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: TestMagnitudeTimeDistribution
class TestMagnitudeTimeDistribution(unittest.TestCase):
"""
Simple class to test the magnitude time density distribution
"""
def setUp(self):
self.catalogue = Catalogue()
x, y = np.meshgrid(np.arange(1915., 2010., 10.),
np.arange(5.5, 9.0, 1.0))
nx, ny = np.shape(x)
self.catalogue.data['magnitude'] = (y.reshape([nx * ny, 1])).flatten()
x = (x.reshape([nx * ny, 1])).flatten()
self.catalogue.data['year'] = x.astype(int)
self.catalogue.data['month'] = np.ones_like(x, dtype=int)
self.catalogue.data['day'] = np.ones_like(x, dtype=int)
self.catalogue.data['hour'] = np.ones_like(x, dtype=int)
self.catalogue.data['minute'] = np.ones_like(x, dtype=int)
self.catalogue.data['second'] = np.ones_like(x, dtype=float)
def test_magnitude_time_distribution_no_uncertainties(self):
# Tests the magnitude-depth distribution without uncertainties
mag_range = np.arange(5., 10., 1.)
time_range = np.arange(1910., 2020., 10.)
# Without normalisation
expected_array = np.ones([len(time_range) - 1, len(mag_range) - 1],
dtype=float)
np.testing.assert_array_almost_equal(
expected_array,
self.catalogue.get_magnitude_time_distribution(
mag_range, time_range))
# With Normalisation
np.testing.assert_array_almost_equal(
expected_array / np.sum(expected_array),
self.catalogue.get_magnitude_time_distribution(
mag_range, time_range, normalisation=True))
示例2: setUp
def setUp(self):
"""
"""
# Read initial dataset
filename = os.path.join(self.BASE_DATA_PATH,
'completeness_test_cat.csv')
test_data = np.genfromtxt(filename, delimiter=',', skip_header=1)
# Create the catalogue A
self.catalogueA = Catalogue.make_from_dict(
{'year': test_data[:,3], 'magnitude': test_data[:,17]})
# Read initial dataset
filename = os.path.join(self.BASE_DATA_PATH,
'recurrence_test_cat_B.csv')
test_data = np.genfromtxt(filename, delimiter=',', skip_header=1)
# Create the catalogue A
self.catalogueB = Catalogue.make_from_dict(
{'year': test_data[:,3], 'magnitude': test_data[:,17]})
# Read the verification table A
filename = os.path.join(self.BASE_DATA_PATH,
'recurrence_table_test_A.csv')
self.true_tableA = np.genfromtxt(filename, delimiter = ',')
# Read the verification table A
filename = os.path.join(self.BASE_DATA_PATH,
'recurrence_table_test_B.csv')
self.true_tableB = np.genfromtxt(filename, delimiter = ',')
示例3: select_catalogue
def select_catalogue(self, valid_id):
'''
Method to post-process the catalogue based on the selection options
:param numpy.ndarray valid_id:
Boolean vector indicating whether each event is selected (True)
or not (False)
:returns:
Catalogue of selected events as instance of
openquake.hmtk.seismicity.catalogue.Catalogue class
'''
if not np.any(valid_id):
# No events selected - create clean instance of class
output = Catalogue()
output.processes = self.catalogue.processes
elif np.all(valid_id):
if self.copycat:
output = deepcopy(self.catalogue)
else:
output = self.catalogue
else:
if self.copycat:
output = deepcopy(self.catalogue)
else:
output = self.catalogue
output.purge_catalogue(valid_id)
return output
示例4: test_select_catalogue_rrup
def test_select_catalogue_rrup(self):
"""
Tests catalogue selection with Joyner-Boore distance
"""
self.fault = mtkActiveFault(
'001',
'A Fault',
self.simple_fault,
[(5., 0.5), (7., 0.5)],
0.,
None,
msr_sigma=[(-1.5, 0.15), (0., 0.7), (1.5, 0.15)])
cat1 = Catalogue()
cat1.data = {"eventID": ["001", "002", "003", "004"],
"longitude": np.array([30.1, 30.1, 30.5, 31.5]),
"latitude": np.array([30.0, 30.25, 30.4, 30.5]),
"depth": np.array([5.0, 250.0, 10.0, 10.0])}
selector = CatalogueSelector(cat1)
# Select within 50 km of the fault
self.fault.select_catalogue(selector, 50.0,
distance_metric="rupture")
np.testing.assert_array_almost_equal(
self.fault.catalogue.data["longitude"],
np.array([30.1, 30.5]))
np.testing.assert_array_almost_equal(
self.fault.catalogue.data["latitude"],
np.array([30.0, 30.4]))
np.testing.assert_array_almost_equal(
self.fault.catalogue.data["depth"],
np.array([5.0, 10.0]))
示例5: test_load_from_array
def test_load_from_array(self):
# Tests the creation of a catalogue from an array and a key list
cat = Catalogue()
cat.load_from_array(['year', 'magnitude'], self.data_array)
np.testing.assert_allclose(cat.data['magnitude'],
self.data_array[:, 1])
np.testing.assert_allclose(cat.data['year'],
self.data_array[:, 0].astype(int))
示例6: test_hypocentres_as_mesh
def test_hypocentres_as_mesh(self):
# Tests the function to render the hypocentres to a
# hazardlib.geo.mesh.Mesh object.
cat = Catalogue()
cat.data['longitude'] = np.array([2., 3.])
cat.data['latitude'] = np.array([2., 3.])
cat.data['depth'] = np.array([2., 3.])
self.assertTrue(isinstance(cat.hypocentres_as_mesh(), Mesh))
示例7: test_get_bounding_box
def test_get_bounding_box(self):
"""
Tests the method to return the bounding box of a catalogue
"""
cat1 = Catalogue()
cat1.data["longitude"] = np.array([10.0, 20.0])
cat1.data["latitude"] = np.array([40.0, 50.0])
bbox = cat1.get_bounding_box()
self.assertAlmostEqual(bbox[0], 10.0)
self.assertAlmostEqual(bbox[1], 20.0)
self.assertAlmostEqual(bbox[2], 40.0)
self.assertAlmostEqual(bbox[3], 50.0)
示例8: test_hypocentres_to_cartesian
def test_hypocentres_to_cartesian(self):
# Tests the function to render the hypocentres to a cartesian array.
# The invoked function nhlib.geo.utils.spherical_to_cartesian is
# tested as part of the nhlib suite. The test here is included for
# coverage
cat = Catalogue()
cat.data['longitude'] = np.array([2., 3.])
cat.data['latitude'] = np.array([2., 3.])
cat.data['depth'] = np.array([2., 3.])
expected_data = spherical_to_cartesian(cat.data['longitude'],
cat.data['latitude'],
cat.data['depth'])
model_output = cat.hypocentres_to_cartesian()
np.testing.assert_array_almost_equal(expected_data, model_output)
示例9: setUp
def setUp(self):
cat1 = Catalogue()
cat1.end_year = 2000
cat1.start_year = 1900
cat1.data['eventID'] = [1.0, 2.0, 3.0]
cat1.data['magnitude'] = np.array([1.0, 2.0, 3.0])
cat2 = Catalogue()
cat2.end_year = 1990
cat2.start_year = 1910
cat2.data['eventID'] = [1.0, 2.0, 3.0]
cat2.data['magnitude'] = np.array([1.0, 2.0, 3.0])
self.cat1 = cat1
self.cat2 = cat2
示例10: setUp
def setUp(self):
"""
This generates a minimum data-set to be used for the regression.
"""
# Test A: Generates a data set assuming b=1 and N(m=4.0)=10.0 events
self.dmag = 0.1
mext = np.arange(4.0, 7.01, 0.1)
self.mval = mext[0:-1] + self.dmag / 2.0
self.bval = 1.0
self.numobs = np.flipud(
np.diff(np.flipud(10.0 ** (-self.bval * mext + 8.0))))
# Test B: Generate a completely artificial catalogue using the
# Gutenberg-Richter distribution defined above
numobs = np.around(self.numobs)
size = int(np.sum(self.numobs))
magnitude = np.zeros(size)
lidx = 0
for mag, nobs in zip(self.mval, numobs):
uidx = int(lidx + nobs)
magnitude[lidx:uidx] = mag + 0.01
lidx = uidx
year = np.ones(size) * 1999
self.catalogue = Catalogue.make_from_dict(
{'magnitude': magnitude, 'year': year})
# Create the seismicity occurrence calculator
self.aki_ml = AkiMaxLikelihood()
示例11: test_select_within_magnitude_range
def test_select_within_magnitude_range(self):
'''
Tests the function to select within the magnitude range
'''
# Setup function
self.catalogue = Catalogue()
self.catalogue.data['magnitude'] = np.array([4., 5., 6., 7., 8.])
selector0 = CatalogueSelector(self.catalogue)
# Test case 1: No limits specified - all catalogue valid
test_cat_1 = selector0.within_magnitude_range()
np.testing.assert_array_almost_equal(test_cat_1.data['magnitude'],
self.catalogue.data['magnitude'])
# Test case 2: Lower depth limit specfied only
test_cat_1 = selector0.within_magnitude_range(lower_mag=5.5)
np.testing.assert_array_almost_equal(test_cat_1.data['magnitude'],
np.array([6., 7., 8.]))
# Test case 3: Upper depth limit specified only
test_cat_1 = selector0.within_magnitude_range(upper_mag=5.5)
np.testing.assert_array_almost_equal(test_cat_1.data['magnitude'],
np.array([4., 5.]))
# Test case 4: Both depth limits specified
test_cat_1 = selector0.within_magnitude_range(upper_mag=7.5,
lower_mag=5.5)
np.testing.assert_array_almost_equal(test_cat_1.data['magnitude'],
np.array([6., 7.]))
示例12: test_kijko_smit_set_reference_magnitude
def test_kijko_smit_set_reference_magnitude(self):
completeness_table = np.array([[1900, 1.0]])
catalogue = Catalogue.make_from_dict(
{'magnitude': np.array([5.0, 6.0]),
'year': np.array([2000, 2000])})
config = {'reference_magnitude': 0.0}
self.ks_ml.calculate(catalogue, config, completeness_table)
示例13: test_select_within_depth_range
def test_select_within_depth_range(self):
# Tests the function to select within the depth range
# Setup function
self.catalogue = Catalogue()
self.catalogue.data['depth'] = np.array([5., 15., 25., 35., 45.])
selector0 = CatalogueSelector(self.catalogue)
# Test case 1: No limits specified - all catalogue valid
test_cat_1 = selector0.within_depth_range()
np.testing.assert_array_almost_equal(test_cat_1.data['depth'],
self.catalogue.data['depth'])
# Test case 2: Lower depth limit specfied only
test_cat_1 = selector0.within_depth_range(lower_depth=30.)
np.testing.assert_array_almost_equal(test_cat_1.data['depth'],
np.array([5., 15., 25.]))
# Test case 3: Upper depth limit specified only
test_cat_1 = selector0.within_depth_range(upper_depth=20.)
np.testing.assert_array_almost_equal(test_cat_1.data['depth'],
np.array([25., 35., 45.]))
# Test case 4: Both depth limits specified
test_cat_1 = selector0.within_depth_range(upper_depth=20.,
lower_depth=40.)
np.testing.assert_array_almost_equal(test_cat_1.data['depth'],
np.array([25., 35.]))
示例14: test_input_checks_use_reference_magnitude
def test_input_checks_use_reference_magnitude(self):
fake_completeness_table = 0.0
catalogue = Catalogue.make_from_dict({'year': [1900]})
config = {'reference_magnitude' : 3.0}
cmag, ctime, ref_mag, dmag, _ = rec_utils.input_checks(catalogue,
config, fake_completeness_table)
self.assertEqual(3.0, ref_mag)
示例15: test_input_checks_sets_magnitude_interval
def test_input_checks_sets_magnitude_interval(self):
fake_completeness_table = 0.0
catalogue = Catalogue.make_from_dict({'year': [1900]})
config = {'magnitude_interval' : 0.1}
cmag, ctime, ref_mag, dmag, _ = rec_utils.input_checks(catalogue,
config, fake_completeness_table)
self.assertEqual(0.1, dmag)