本文整理汇总了Python中openquake.hazardlib.geo.point.Point类的典型用法代码示例。如果您正苦于以下问题:Python Point类的具体用法?Python Point怎么用?Python Point使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Point类的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: circular_distance_from_point
def circular_distance_from_point(self, point, distance, **kwargs):
'''
Select earthquakes within a distance from a Point
:param point:
Centre point as instance of nhlib.geo.point.Point class
:param float distance:
Distance (km)
:returns:
Instance of :class:`openquake.hmtk.seismicity.catalogue.Catalogue`
containing only selected events
'''
if kwargs['distance_type'] is 'epicentral':
locations = Mesh(
self.catalogue.data['longitude'],
self.catalogue.data['latitude'],
np.zeros(len(self.catalogue.data['longitude']), dtype=float))
point = Point(point.longitude, point.latitude, 0.0)
else:
locations = self.catalogue.hypocentres_as_mesh()
is_close = point.closer_than(locations, distance)
return self.select_catalogue(is_close)
示例2: cartesian_square_centred_on_point
def cartesian_square_centred_on_point(self, point, distance, **kwargs):
'''
Select earthquakes from within a square centered on a point
:param point:
Centre point as instance of nhlib.geo.point.Point class
:param distance:
Distance (km)
:returns:
Instance of :class:`openquake.hmtk.seismicity.catalogue.Catalogue`
class containing only selected events
'''
point_surface = Point(point.longitude, point.latitude, 0.)
# As distance is
north_point = point_surface.point_at(distance, 0., 0.)
east_point = point_surface.point_at(distance, 0., 90.)
south_point = point_surface.point_at(distance, 0., 180.)
west_point = point_surface.point_at(distance, 0., 270.)
is_long = np.logical_and(
self.catalogue.data['longitude'] >= west_point.longitude,
self.catalogue.data['longitude'] < east_point.longitude)
is_surface = np.logical_and(
is_long,
self.catalogue.data['latitude'] >= south_point.latitude,
self.catalogue.data['latitude'] < north_point.latitude)
upper_depth, lower_depth = _check_depth_limits(kwargs)
is_valid = np.logical_and(
is_surface,
self.catalogue.data['depth'] >= upper_depth,
self.catalogue.data['depth'] < lower_depth)
return self.select_catalogue(is_valid)
示例3: setUp
def setUp(self):
'''
'''
self.fault = None
self.regionalisation = None
self.msr = [(WC1994(), 1.0)]
self.msr_sigma = [(-1.5, 0.15), (0.0, 0.7), (1.5, 0.15)]
self.shear_mod = [(30.0, 0.8), (35.0, 0.2)]
self.dlr = [(1.25E-5, 1.0)]
self.config = [{}]
self.slip = [(10.0, 1.0)]
x0 = Point(30., 30., 0.)
x1 = x0.point_at(30., 0., 30.)
x2 = x1.point_at(30., 0., 60.)
# Total length is 60 km
self.trace = Line([x0, x1, x2])
self.dip = 90.
self.upper_depth = 0.
self.lower_depth = 20.
self.simple_fault = SimpleFaultGeometry(self.trace,
self.dip,
self.upper_depth,
self.lower_depth)
# Creates a trace ~60 km long made of 3 points
upper_edge = Line([x0, x1, x2])
lower_edge = Line([x0.point_at(40., 20., 130.),
x1.point_at(42., 25., 130.),
x2.point_at(41., 22., 130.)])
self.complex_fault = ComplexFaultGeometry([upper_edge, lower_edge],
2.0)
示例4: build_planar_surface
def build_planar_surface(geometry):
"""
Builds the planar rupture surface from the openquake.nrmllib.models
instance
"""
# Read geometry from wkt
geom = wkt.loads(geometry.wkt)
top_left = Point(geom.xy[0][0],
geom.xy[1][0],
geometry.upper_seismo_depth)
top_right = Point(geom.xy[0][1],
geom.xy[1][1],
geometry.upper_seismo_depth)
strike = top_left.azimuth(top_right)
dip_dir = (strike + 90.) % 360.
depth_diff = geometry.lower_seismo_depth - geometry.upper_seismo_depth
bottom_right = top_right.point_at(
depth_diff / np.tan(geometry.dip * (np.pi / 180.)),
depth_diff,
dip_dir)
bottom_left = top_left.point_at(
depth_diff / np.tan(geometry.dip * (np.pi / 180.)),
depth_diff,
dip_dir)
return PlanarSurface(1.0,
strike,
geometry.dip,
top_left,
top_right,
bottom_right,
bottom_left)
示例5: _rup_to_point
def _rup_to_point(distance, surface, origin, azimuth, distance_type='rjb',
iter_stop=1E-5, maxiter=1000):
"""
"""
pt0 = origin
pt1 = origin.point_at(distance, 0., azimuth)
r_diff = np.inf
iterval = 0
while (np.fabs(r_diff) >= iter_stop) and (iterval <= maxiter):
pt1mesh = Mesh(np.array([pt1.longitude]),
np.array([pt1.latitude]),
None)
if distance_type == 'rjb':
r_diff = distance - surface.get_joyner_boore_distance(pt1mesh)
elif distance_type == 'rrup':
r_diff = distance - surface.get_min_distance(pt1mesh)
else:
raise ValueError('Distance type must be rrup or rjb!')
pt0 = Point(pt1.longitude, pt1.latitude)
if r_diff > 0.:
pt1 = pt0.point_at(r_diff, 0., azimuth)
else:
pt1 = pt0.point_at(r_diff, 0., (azimuth + 180.) % 360.)
return pt1
示例6: setUp
def setUp(self):
'''
Creates a complex fault typology
'''
x0 = Point(30., 30., 0.)
x1 = x0.point_at(30., 0., 30.)
x2 = x1.point_at(30., 0., 60.)
upper_edge = Line([x0, x1, x2])
lower_edge = Line([x0.point_at(40., 20., 130.),
x1.point_at(42., 25., 130.),
x2.point_at(41., 22., 130.)])
self.edges = [upper_edge, lower_edge]
self.fault = None
示例7: check_surface_validity
def check_surface_validity(cls, edges):
"""
Check validity of the surface.
Project edge points to vertical plane anchored to surface upper left
edge and with strike equal to top edge strike. Check that resulting
polygon is valid.
This method doesn't have to be called by hands before creating the
surface object, because it is called from :meth:`from_fault_data`.
"""
# extract coordinates of surface boundary (as defined from edges)
full_boundary = []
left_boundary = []
right_boundary = []
for i in range(1, len(edges) - 1):
left_boundary.append(edges[i].points[0])
right_boundary.append(edges[i].points[-1])
full_boundary.extend(edges[0].points)
full_boundary.extend(right_boundary)
full_boundary.extend(edges[-1].points[::-1])
full_boundary.extend(left_boundary[::-1])
lons = [p.longitude for p in full_boundary]
lats = [p.latitude for p in full_boundary]
depths = [p.depth for p in full_boundary]
# define reference plane. Corner points are separated by an arbitrary
# distance of 10 km. The mesh spacing is set to 2 km. Both corner
# distance and mesh spacing values do not affect the algorithm results.
ul = edges[0].points[0]
strike = ul.azimuth(edges[0].points[-1])
dist = 10.
mesh_spacing = 2.
ur = ul.point_at(dist, 0, strike)
bl = Point(ul.longitude, ul.latitude, ul.depth + dist)
br = bl.point_at(dist, 0, strike)
# project surface boundary to reference plane and check for
# validity.
ref_plane = PlanarSurface.from_corner_points(
mesh_spacing, ul, ur, br, bl
)
_, xx, yy = ref_plane._project(lons, lats, depths)
coords = [(x, y) for x, y in zip(xx, yy)]
p = shapely.geometry.Polygon(coords)
if not p.is_valid:
raise ValueError('Edges points are not in the right order')
示例8: assert_mesh_is
def assert_mesh_is(testcase, surface, expected_mesh):
mesh = surface.get_mesh()
testcase.assertIs(mesh, surface.get_mesh())
expected_mesh = list(itertools.chain(*expected_mesh))
testcase.assertEqual(len(mesh), len(expected_mesh))
testcase.assertIsInstance(mesh, Mesh)
for i, point in enumerate(mesh):
expected_point = Point(*expected_mesh[i])
distance = expected_point.distance(point) * 1e3
testcase.assertAlmostEqual(
0, distance, delta=2, # allow discrepancy of 2 meters
msg="point %d is off: %s != %s (distance is %.3fm)"
% (i, point, expected_point, distance)
)
示例9: getLength
def getLength(self):
"""
Compute length of rupture (km). For EdgeRupture, we compute the length
as the length of the top edge projected to the surface.
Returns:
float: Rupture length in km.
"""
lons = self._toplons
lats = self._toplats
seg = self._group_index
groups = np.unique(seg)
ng = len(groups)
rlength = 0
for i in range(ng):
group_segments = np.where(groups[i] == seg)[0]
nseg = len(group_segments) - 1
for j in range(nseg):
ind = group_segments[j]
P0 = Point(lons[ind], lats[ind])
P1 = Point(lons[ind + 1], lats[ind + 1])
dist = P0.distance(P1)
rlength = rlength + dist
return rlength
示例10: test_build_fault_model
def test_build_fault_model(self):
# Tests the constuction of a fault model with two faults (1 simple,
# 1 complex) each with two mfd rates - should produce four sources
self.model = mtkActiveFaultModel('001', 'A Fault Model', faults=[])
x0 = Point(30., 30., 0.)
x1 = x0.point_at(30., 0., 30.)
x2 = x1.point_at(30., 0., 60.)
# Total length is 60 km
trace = Line([x0, x1, x2])
simple_fault = SimpleFaultGeometry(trace, 90., 0., 20.)
# Creates a trace ~60 km long made of 3 points
upper_edge = Line([x0, x1, x2])
lower_edge = Line(
[x0.point_at(40., 20., 130.),
x1.point_at(42., 25., 130.),
x2.point_at(41., 22., 130.)])
complex_fault = ComplexFaultGeometry([upper_edge, lower_edge], 2.0)
config = [{'MFD_spacing': 0.1,
'Maximum_Magnitude': 7.0,
'Maximum_Uncertainty': None,
'Model_Name': 'Characteristic',
'Model_Weight': 0.5,
'Sigma': 0.1,
'Lower_Bound': -1.,
'Upper_Bound': 1.},
{'MFD_spacing': 0.1,
'Maximum_Magnitude': 7.5,
'Maximum_Uncertainty': None,
'Model_Name': 'Characteristic',
'Model_Weight': 0.5,
'Sigma': 0.1,
'Lower_Bound': -1.,
'Upper_Bound': 1.}]
fault1 = mtkActiveFault('001', 'Simple Fault 1', simple_fault,
[(10.0, 1.0)], -90., None,
aspect_ratio=1.0,
scale_rel=[(WC1994(), 1.0)],
shear_modulus=[(30.0, 1.0)],
disp_length_ratio=[(1E-5, 1.0)])
fault1.generate_config_set(config)
fault2 = mtkActiveFault('002', 'Complex Fault 1', complex_fault,
[(10.0, 1.0)], -90., None,
aspect_ratio=1.0,
scale_rel=[(WC1994(), 1.0)],
shear_modulus=[(30.0, 1.0)],
disp_length_ratio=[(1E-5, 1.0)])
fault2.generate_config_set(config)
self.model.faults = [fault1, fault2]
# Generate source model
self.model.build_fault_model()
self.assertEqual(len(self.model.source_model.sources), 4)
# First source should be an instance of a mtkSimpleFaultSource
model1 = self.model.source_model.sources[0]
self.assertTrue(isinstance(model1, mtkSimpleFaultSource))
self.assertEqual(model1.id, '001_1')
self.assertAlmostEqual(model1.mfd.min_mag, 6.9)
np.testing.assert_array_almost_equal(
np.log10(np.array(model1.mfd.occurrence_rates)),
np.array([-2.95320041, -2.54583708, -2.953200413]))
# Second source should be an instance of a mtkSimpleFaultSource
model2 = self.model.source_model.sources[1]
self.assertTrue(isinstance(model2, mtkSimpleFaultSource))
self.assertEqual(model2.id, '001_2')
self.assertAlmostEqual(model2.mfd.min_mag, 7.4)
np.testing.assert_array_almost_equal(
np.log10(np.array(model2.mfd.occurrence_rates)),
np.array([-3.70320041, -3.29583708, -3.70320041]))
# Third source should be an instance of a mtkComplexFaultSource
model3 = self.model.source_model.sources[2]
self.assertTrue(isinstance(model3, mtkComplexFaultSource))
self.assertEqual(model3.id, '002_1')
self.assertAlmostEqual(model3.mfd.min_mag, 6.9)
np.testing.assert_array_almost_equal(
np.log10(np.array(model3.mfd.occurrence_rates)),
np.array([-2.59033387, -2.18297054, -2.59033387]))
# Fourth source should be an instance of a mtkComplexFaultSource
model4 = self.model.source_model.sources[3]
self.assertTrue(isinstance(model4, mtkComplexFaultSource))
self.assertEqual(model4.id, '002_2')
self.assertAlmostEqual(model4.mfd.min_mag, 7.4)
np.testing.assert_array_almost_equal(
np.log10(np.array(model4.mfd.occurrence_rates)),
np.array([-3.34033387, -2.93297054, -3.34033387]))