本文整理汇总了Python中openpyxl.chart.BarChart.shape方法的典型用法代码示例。如果您正苦于以下问题:Python BarChart.shape方法的具体用法?Python BarChart.shape怎么用?Python BarChart.shape使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类openpyxl.chart.BarChart
的用法示例。
在下文中一共展示了BarChart.shape方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: ExportToExcel
# 需要导入模块: from openpyxl.chart import BarChart [as 别名]
# 或者: from openpyxl.chart.BarChart import shape [as 别名]
def ExportToExcel():
h = open('final.txt','r')
h = h.read()
book = openpyxl.Workbook()
sheet1 = book.active
sheet1.cell(column=1,row=1,value='Server')
sheet1.cell(column=2,row=1,value='Consumption')
sheet1.cell(column=3,row=1,value='Output')
sheet1.cell(column=4,row=1,value='Average')
sername = [sername.split()[0] for sername in h.splitlines()]
consump = [float(consump.split()[1].replace(',','')) for consump in h.splitlines()]
output = [int(output.split()[2]) for output in h.splitlines()]
for row in range(len(sername)):
_ = sheet1.cell(column=1, row=row+2, value="%s" %sername[row])
_ = sheet1.cell(column=2, row=row+2, value=consump[row])
_ = sheet1.cell(column=3, row=row+2, value=output[row])
_ = sheet1.cell(column=4, row=row+2, value="=B%d/C%d" %(row+2,row+2))
chart1 = BarChart()
chart1.type = "col"
chart1.style = 10
chart1.title = "Server vs Consumption"
chart1.y_axis.title = 'Consumption'
chart1.x_axis.title = 'Server Name'
data = Reference(sheet1, min_col=2, min_row=1, max_row=len(sername)+1, max_col=3)
cats = Reference(sheet1, min_col=1, min_row=2, max_row=len(sername)+1)
chart1.add_data(data, titles_from_data=True)
chart1.set_categories(cats)
chart1.shape = 4
sheet1.add_chart(chart1, "I1")
chart1 = BarChart()
chart1.type = "col"
chart1.style = 10
chart1.title = "Server vs Consumption"
chart1.y_axis.title = 'Consumption'
chart1.x_axis.title = 'Server Name'
data = Reference(sheet1, min_col=4, min_row=1, max_row=len(sername)+1, max_col=4)
cats = Reference(sheet1, min_col=1, min_row=2, max_row=len(sername)+1)
chart1.add_data(data, titles_from_data=True)
chart1.set_categories(cats)
chart1.shape = 4
sheet1.add_chart(chart1, "I20")
global name
name = "EnergyConsumption_{}.xlsx".format(datetime.datetime.now().date())
book.save(name)
return
示例2: excel_sfr_barchart
# 需要导入模块: from openpyxl.chart import BarChart [as 别名]
# 或者: from openpyxl.chart.BarChart import shape [as 别名]
def excel_sfr_barchart(ws):
chart1 = BarChart()
chart1.type = "col"
chart1.style = 12
chart1.title = "SFR Chart"
chart1.y_axis.title = 'SFR'
chart1.x_axis.title = 'ROI'
# Select all data include title
data = Reference(ws, min_col=5, min_row=1, max_row=37, max_col=5)
# Select data only
cats = Reference(ws, min_col=4, min_row=2, max_row=37)
chart1.add_data(data, titles_from_data=True)
chart1.set_categories(cats)
chart1.shape = 4
chart1.x_axis.scaling.min = 0
chart1.x_axis.scaling.max = 37
chart1.y_axis.scaling.min = 0
chart1.y_axis.scaling.max = 1
ws.add_chart(chart1, "G21")
示例3: excel_mtf_barchart
# 需要导入模块: from openpyxl.chart import BarChart [as 别名]
# 或者: from openpyxl.chart.BarChart import shape [as 别名]
def excel_mtf_barchart(ws):
chart1 = BarChart()
chart1.type = "col"
chart1.style = 10
chart1.title = "MTF Chart"
chart1.y_axis.title = 'MTF'
chart1.x_axis.title = 'ROI'
# Select all data include title
data = Reference(ws, min_col=2, min_row=1, max_row=19, max_col=2)
# Select data only
cats = Reference(ws, min_col=1, min_row=2, max_row=18)
chart1.add_data(data, titles_from_data=True)
chart1.set_categories(cats)
chart1.shape = 4
chart1.x_axis.scaling.min = 0
chart1.x_axis.scaling.max = 18
chart1.y_axis.scaling.min = 0
chart1.y_axis.scaling.max = 1
ws.add_chart(chart1, "G1")
示例4: pop_excl
# 需要导入模块: from openpyxl.chart import BarChart [as 别名]
# 或者: from openpyxl.chart.BarChart import shape [as 别名]
def pop_excl (sv_dict, ClusName):
wb = openpyxl.Workbook ()
sh = wb.active
count1 = 0
count2 = 2
alph = ['a', 'b', 'c', 'd']
f = sh['a1']
f.font = Font (bold=True)
f = sh['b1']
f.font = Font (bold=True)
sh.title = 'HighLevel'
sh['a1'] = 'StorageView'
sh['b1'] = 'Size(G)'
for i in sv_dict:
sh[alph[count1] + str (count2)] = i
count1 += 1
sh[alph[count1] + str (count2)] = float (sv_dict[i][-1][-1])
count2 += 1
count1 = 0
count2 = 2
for i in sv_dict:
sh = wb.create_sheet (i)
sh = wb.get_sheet_by_name (i)
f = sh['a1']
f.font = Font (bold=True)
f = sh['b1']
f.font = Font (bold=True)
f = sh['c1']
f.font = Font (bold=True)
f = sh['d1']
f.font = Font (bold=True)
sh['a1'] = 'LunID'
sh['b1'] = 'Name'
sh['c1'] = 'VPD'
sh['d1'] = 'Size(G/T)'
for j in range (len (sv_dict[i])):
for k in range (4):
sh[alph[count1] + str (count2)] = sv_dict[i][j][k]
count1 += 1
count2 += 1
count1 = 0
count2 = 2
logging.debug('Start of chart')
l = len(sv_dict)
sh = wb.get_sheet_by_name ('HighLevel')
logging.debug('sheets: %s' % (wb.get_sheet_names ()))
logging.debug('sh: %s' % (sh.title))
chart1 = BarChart()
chart1.type = "col"
chart1.style = 11
chart1.title = "VPlex Capacity Report"
chart1.y_axis.title = 'Size'
chart1.x_axis.title = 'View Name'
logging.debug('len of sv_dict: %d' % (l))
data = Reference(sh, min_col=2, min_row=2, max_row=l + 1, max_col=2)
cats = Reference(sh, min_col=1, min_row=2, max_row=l + 1)
chart1.add_data(data, titles_from_data=False)
chart1.set_categories(cats)
chart1.top = 100
chart1.left = 30
chart1.width = 27
chart1.height = 10
chart1.shape = sh.add_chart(chart1, "D2")
wb.save (ClusName)
return 0
示例5: BarChart
# 需要导入模块: from openpyxl.chart import BarChart [as 别名]
# 或者: from openpyxl.chart.BarChart import shape [as 别名]
for row in rows:
ws.append(row)
chart1 = BarChart()
chart1.type = "col"
chart1.style = 10
chart1.title = "Bar Chart"
chart1.y_axis.title = 'Membership'
chart1.x_axis.title = 'Month'
data = Reference(ws, min_col=2, min_row=1, max_row=7, max_col=3)
cats = Reference(ws, min_col=1, min_row=2, max_row=7)
chart1.add_data(data, titles_from_data=True)
chart1.set_categories(cats)
chart1.shape = 4
ws.add_chart(chart1, "A10")
from copy import deepcopy
chart2 = deepcopy(chart1)
chart2.style = 11
chart2.type = "bar"
chart2.title = "Horizontal Bar Chart"
ws.add_chart(chart2, "G10")
chart3 = deepcopy(chart1)
chart3.type = "col"
chart3.style = 12
示例6: Workbook
# 需要导入模块: from openpyxl.chart import BarChart [as 别名]
# 或者: from openpyxl.chart.BarChart import shape [as 别名]
from openpyxl import Workbook
from openpyxl.chart import BarChart, Series, Reference
wb = Workbook(write_only=True)
ws = wb.create_sheet()
rows = [
('Number', 'Batch 1', 'Batch 2'),
(2, 10, 30),
(3, 40, 60),
(4, 50, 70),
(5, 20, 10),
(6, 10, 40),
(7, 50, 30),
]
for row in rows:
ws.append(row)
chart = BarChart()
chart.type = "col"
chart.style = 10
chart.title = "Bar Chart"
chart.y_axis.title = 'Test number'
chart.x_axis.title = 'Sample length (mm)'
xData = Reference(ws, min_col=2, min_row=1, max_row=7, max_col=3)
yData = Reference(ws, min_col=1, min_row=2, max_row=7)
chart.add_data(xData, titles_from_data=True)
chart.set_categories(yData)
chart.shape = 4
ws.add_chart(chart, "B10")
wb.save('data/barCharts.xlsx')
示例7: draw_excel_charts
# 需要导入模块: from openpyxl.chart import BarChart [as 别名]
# 或者: from openpyxl.chart.BarChart import shape [as 别名]
def draw_excel_charts(sblog_dict, excel_filename):
"""
This function accepts a defaultdict which contains all the data of tps and rt
an will create an Microsoft Excel spreadsheet with charts.
:param sblog_dict:
:param excel_filename:
:return:
"""
clean_dict = data_cleansing(sblog_dict)
tps_data, rt_data, avg_rt_data, tps_std_data, rt_std_data = [], [], [], [], []
workload_cols_rows = {}
workload_types = set()
col_name_parsed = False
for key in clean_dict.keys():
data_list = clean_dict[key]
col_name, tps, rt, avg_rt, tps_std, rt_std = zip(*data_list)
if not col_name_parsed:
rt_data.append(col_name)
tps_data.append(col_name)
avg_rt_data.append(col_name)
tps_std_data.append(col_name)
rt_std_data.append(col_name)
workload_types = set(x.split('_')[1] for x in col_name[1:])
workload_cols_rows.update({wl_type: {'cols': 0, 'rows': 0} for wl_type in workload_types})
col_name_parsed = True
tps_data.append(tps)
rt_data.append(rt)
avg_rt_data.append(avg_rt)
tps_std_data.append(tps_std)
rt_std_data.append(rt_std)
# print('tps_data: {}'.format(tps_data))
# print('rt_data: {}'.format(rt_data))
# print('avg_rt_data: {}'.format(avg_rt_data))
wb = Workbook(write_only=True)
for wl_type in workload_types:
wb.create_sheet(title=get_sheetname_by_workload(wl_type))
merged_rows = []
for tps, rt, avg_rt, tps_std, rt_std in zip(tps_data, rt_data, avg_rt_data, tps_std_data, rt_std_data):
merged_rows.append(tps + rt + avg_rt + tps_std + rt_std)
# print(merged_rows)
# The tps chart:
# print('merged_rows: {}\n'.format(merged_rows))
for row in merged_rows:
for wl_type in workload_types:
wl_row = [row[i] for i in range(len(row)) if
wl_type in merged_rows[0][i].split('_') or i == 0 or merged_rows[0][i] == 'Thread']
# print('wl_row: {}'.format(wl_row))
wb.get_sheet_by_name(get_sheetname_by_workload(wl_type)).append(wl_row)
workload_cols_rows[wl_type]['cols'] = len(wl_row)
workload_cols_rows[wl_type]['rows'] += 1
for ws in wb:
global_max_row = workload_cols_rows[get_wl_from_sheetname(ws.title)]['rows']
# Chart of TPS
chart_tps = BarChart(gapWidth=500)
chart_tps.type = "col"
chart_tps.style = 10
chart_tps.title = "TPS chart of {}".format(ws.title)
chart_tps.y_axis.title = 'tps'
chart_tps.y_axis.scaling.min = 0
chart_tps.x_axis.title = 'tps'
data_tps = Reference(ws, min_col=2, min_row=1,
max_row=workload_cols_rows[get_wl_from_sheetname(ws.title)]['rows'],
max_col=workload_cols_rows[get_wl_from_sheetname(ws.title)]['cols'] / 5)
cats_tps = Reference(ws, min_col=1, min_row=2,
max_row=workload_cols_rows[get_wl_from_sheetname(ws.title)]['rows'])
chart_tps.add_data(data_tps, titles_from_data=True)
chart_tps.set_categories(cats_tps)
chart_tps.shape = 4
ws.add_chart(chart_tps, "A{}".format(global_max_row + 5))
# Chart of Response Time
chart_rt = BarChart(gapWidth=500)
chart_rt.type = "col"
chart_rt.style = 10
chart_rt.title = "Response Time(95%) chart of {}".format(ws.title)
chart_rt.y_axis.title = 'rt'
chart_rt.y_axis.scaling.min = 0
chart_rt.x_axis.title = 'response time'
data_rt = Reference(ws, min_col=workload_cols_rows[get_wl_from_sheetname(ws.title)]['cols'] / 5 + 2,
min_row=1,
max_row=workload_cols_rows[get_wl_from_sheetname(ws.title)]['rows'],
max_col=workload_cols_rows[get_wl_from_sheetname(ws.title)]['cols'] * 2 / 5)
cats_rt = Reference(ws, min_col=1, min_row=2,
max_row=workload_cols_rows[get_wl_from_sheetname(ws.title)]['rows'])
chart_rt.add_data(data_rt, titles_from_data=True)
#.........这里部分代码省略.........