本文整理汇总了Python中openmdao.lib.casehandlers.api.DBCaseRecorder.get_iterator方法的典型用法代码示例。如果您正苦于以下问题:Python DBCaseRecorder.get_iterator方法的具体用法?Python DBCaseRecorder.get_iterator怎么用?Python DBCaseRecorder.get_iterator使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类openmdao.lib.casehandlers.api.DBCaseRecorder
的用法示例。
在下文中一共展示了DBCaseRecorder.get_iterator方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_db_to_dict
# 需要导入模块: from openmdao.lib.casehandlers.api import DBCaseRecorder [as 别名]
# 或者: from openmdao.lib.casehandlers.api.DBCaseRecorder import get_iterator [as 别名]
def test_db_to_dict(self):
tmpdir = tempfile.mkdtemp()
dfile = os.path.join(tmpdir, 'junk.db')
recorder = DBCaseRecorder(dfile)
# create some Cases where some are missing a variable
outputs = ['comp1.z', 'comp2.z']
inputs = ['comp1.x', 'comp1.y', 'comp1.y2']
recorder.register(self, inputs, outputs)
for i in range(10):
inputs = [i, i*2, i*3]
outputs = [i*i, float('NaN')]
recorder.record(self, inputs, outputs, None, '', '')
varnames = ['comp1.x', 'comp1.y', 'comp1.y2']
varinfo = case_db_to_dict(dfile, varnames)
self.assertEqual(len(varinfo), 3)
# each var list should have 10 data values in it
for lst in varinfo.values():
self.assertEqual(len(lst), 10)
# now use caseiter_to_dict to grab the same data
varinfo = caseiter_to_dict(recorder.get_iterator(), varnames)
# each var list should have 10 data values in it
for lst in varinfo.values():
self.assertEqual(len(lst), 10)
try:
shutil.rmtree(tmpdir, onerror=onerror)
except OSError:
logging.error("problem removing directory %s", tmpdir)
示例2: test_string
# 需要导入模块: from openmdao.lib.casehandlers.api import DBCaseRecorder [as 别名]
# 或者: from openmdao.lib.casehandlers.api.DBCaseRecorder import get_iterator [as 别名]
def test_string(self):
recorder = DBCaseRecorder()
inputs = ['str', 'unicode', 'list'] # Check pickling.
recorder.register(self, inputs, [])
inputs = ['Normal String', u'Unicode String', ['Hello', 'world']]
recorder.record(self, inputs, [], None, '', '')
for case in recorder.get_iterator():
self.assertEqual(case['str'], 'Normal String')
self.assertEqual(case['unicode'], u'Unicode String')
self.assertEqual(case['list'], ['Hello', 'world'])
示例3: test_string
# 需要导入模块: from openmdao.lib.casehandlers.api import DBCaseRecorder [as 别名]
# 或者: from openmdao.lib.casehandlers.api.DBCaseRecorder import get_iterator [as 别名]
def test_string(self):
recorder = DBCaseRecorder()
case = Case(inputs=[('str', 'Normal String'),
('unicode', u'Unicode String'),
('list', ['Hello', 'world'])]) # Check pickling.
recorder.record(case)
for case in recorder.get_iterator():
self.assertEqual(case['str'], 'Normal String')
self.assertEqual(case['unicode'], u'Unicode String')
self.assertEqual(case['list'], ['Hello', 'world'])
示例4: test_string
# 需要导入模块: from openmdao.lib.casehandlers.api import DBCaseRecorder [as 别名]
# 或者: from openmdao.lib.casehandlers.api.DBCaseRecorder import get_iterator [as 别名]
def test_string(self):
recorder = DBCaseRecorder()
case = Case(
inputs=[("str", "Normal String"), ("unicode", u"Unicode String"), ("list", ["Hello", "world"])]
) # Check pickling.
recorder.record(case)
for case in recorder.get_iterator():
self.assertEqual(case["str"], "Normal String")
self.assertEqual(case["unicode"], u"Unicode String")
self.assertEqual(case["list"], ["Hello", "world"])
示例5: test_pickle_conversion
# 需要导入模块: from openmdao.lib.casehandlers.api import DBCaseRecorder [as 别名]
# 或者: from openmdao.lib.casehandlers.api.DBCaseRecorder import get_iterator [as 别名]
def test_pickle_conversion(self):
recorder = DBCaseRecorder()
for i in range(10):
inputs = [('comp1.x', i), ('comp1.y', i*2.)]
outputs = [('comp1.z', i*1.5), ('comp2.normal', NormalDistribution(float(i),0.5))]
recorder.record(Case(inputs=inputs, outputs=outputs, label='case%s'%i))
iterator = recorder.get_iterator()
for i,case in enumerate(iterator):
self.assertTrue(isinstance(case['comp2.normal'], NormalDistribution))
self.assertEqual(case['comp2.normal'].mu, float(i))
self.assertEqual(case['comp2.normal'].sigma, 0.5)
self.assertTrue(isinstance(case['comp1.y'], float))
self.assertEqual(case['comp1.y'], i*2.)
self.assertEqual(case['comp1.z'], i*1.5)
示例6: test_query
# 需要导入模块: from openmdao.lib.casehandlers.api import DBCaseRecorder [as 别名]
# 或者: from openmdao.lib.casehandlers.api.DBCaseRecorder import get_iterator [as 别名]
def test_query(self):
recorder = DBCaseRecorder()
for i in range(10):
inputs = [('comp1.x', i), ('comp1.y', i*2.)]
outputs = [('comp1.z', i*1.5), ('comp2.normal', NormalDistribution(float(i),0.5))]
recorder.record(Case(inputs=inputs, outputs=outputs, label='case%s'%i))
iterator = recorder.get_iterator()
iterator.selectors = ["value>=0","value<3"]
count = 0
for i,case in enumerate(iterator):
count += 1
for name,value in case.items():
self.assertTrue(value >= 0 and value<3)
self.assertEqual(count, 3)
示例7: test_pickle_conversion
# 需要导入模块: from openmdao.lib.casehandlers.api import DBCaseRecorder [as 别名]
# 或者: from openmdao.lib.casehandlers.api.DBCaseRecorder import get_iterator [as 别名]
def test_pickle_conversion(self):
recorder = DBCaseRecorder()
inputs = ['comp1.x', 'comp1.y']
outputs = ['comp1.z', 'comp2.normal']
recorder.register(self, inputs, outputs)
for i in range(10):
inputs = [i, i*2.]
outputs = [i*1.5, NormalDistribution(float(i), 0.5)]
recorder.record(self, inputs, outputs, None, '', '')
iterator = recorder.get_iterator()
for i, case in enumerate(iterator):
self.assertTrue(isinstance(case['comp2.normal'], NormalDistribution))
self.assertEqual(case['comp2.normal'].mu, float(i))
self.assertEqual(case['comp2.normal'].sigma, 0.5)
self.assertTrue(isinstance(case['comp1.y'], float))
self.assertEqual(case['comp1.y'], i*2.)
self.assertEqual(case['comp1.z'], i*1.5)
示例8: test_query
# 需要导入模块: from openmdao.lib.casehandlers.api import DBCaseRecorder [as 别名]
# 或者: from openmdao.lib.casehandlers.api.DBCaseRecorder import get_iterator [as 别名]
def test_query(self):
recorder = DBCaseRecorder()
inputs = ['comp1.x', 'comp1.y']
outputs = ['comp1.z', 'comp2.normal']
recorder.register(self, inputs, outputs)
for i in range(10):
inputs = [i, i*2.]
outputs = [i*1.5, NormalDistribution(float(i), 0.5)]
recorder.record(self, inputs, outputs, None, '', '')
iterator = recorder.get_iterator()
iterator.selectors = ["value>=0", "value<3"]
count = 0
for i, case in enumerate(iterator):
count += 1
for value in case.values():
self.assertTrue(value >= 0 and value < 3)
self.assertEqual(count, 3)
示例9: __init__
# 需要导入模块: from openmdao.lib.casehandlers.api import DBCaseRecorder [as 别名]
# 或者: from openmdao.lib.casehandlers.api.DBCaseRecorder import get_iterator [as 别名]
def __init__(self):
"""Creates an Assembly to run DREA and HSRnoise."""
super(DREA_HSRnoise, self).__init__()
FO1 = Case(inputs=[('point', 1),('dreaprep.Mach',0.28),('alt',2000.0),('dreaprep.PC',100.0),('hsrnoise.phi', 0.0)], outputs=[('drea.CFG',0.0),('hsrnoise.thetas',0.0),('hsrnoise.Freq',0.0),('hsrnoise.SPL_corr',0),('hsrnoise.OASPL30',0.0),('hsrnoise.OASPL60',0.0),('hsrnoise.OASPL90',0.0),('hsrnoise.OASPL120',0.0),('hsrnoise.OASPL150',0.0)])
FO2 = Case(inputs=[('point', 1),('dreaprep.Mach',0.28),('alt',2000.0),('dreaprep.PC', 65.0),('hsrnoise.phi', 0.0)], outputs=[('drea.CFG',0.0),('hsrnoise.thetas',0.0),('hsrnoise.Freq',0.0),('hsrnoise.SPL_corr',0),('hsrnoise.OASPL30',0.0),('hsrnoise.OASPL60',0.0),('hsrnoise.OASPL90',0.0),('hsrnoise.OASPL120',0.0),('hsrnoise.OASPL150',0.0)])
App = Case(inputs=[('point', 2),('dreaprep.Mach',0.20),('alt', 394.0),('dreaprep.PC', 30.0),('hsrnoise.phi', 0.0)], outputs=[('drea.CFG',0.0),('hsrnoise.thetas',0.0),('hsrnoise.Freq',0.0),('hsrnoise.SPL_corr',0),('hsrnoise.OASPL30',0.0),('hsrnoise.OASPL60',0.0),('hsrnoise.OASPL90',0.0),('hsrnoise.OASPL120',0.0),('hsrnoise.OASPL150',0.0)])
SL1 = Case(inputs=[('point', 3),('dreaprep.Mach',0.25),('alt',1000.0),('dreaprep.PC',100.0),('hsrnoise.phi', 0.0)], outputs=[('drea.CFG',0.0),('hsrnoise.thetas',0.0),('hsrnoise.Freq',0.0),('hsrnoise.SPL_corr',0),('hsrnoise.OASPL30',0.0),('hsrnoise.OASPL60',0.0),('hsrnoise.OASPL90',0.0),('hsrnoise.OASPL120',0.0),('hsrnoise.OASPL150',0.0)])
SL2 = Case(inputs=[('point', 3),('dreaprep.Mach',0.25),('alt',1000.0),('dreaprep.PC',100.0),('hsrnoise.phi',30.0)], outputs=[('drea.CFG',0.0),('hsrnoise.thetas',0.0),('hsrnoise.Freq',0.0),('hsrnoise.SPL_corr',0),('hsrnoise.OASPL30',0.0),('hsrnoise.OASPL60',0.0),('hsrnoise.OASPL90',0.0),('hsrnoise.OASPL120',0.0),('hsrnoise.OASPL150',0.0)])
SL3 = Case(inputs=[('point', 3),('dreaprep.Mach',0.25),('alt',1000.0),('dreaprep.PC',100.0),('hsrnoise.phi',60.0)], outputs=[('drea.CFG',0.0),('hsrnoise.thetas',0.0),('hsrnoise.Freq',0.0),('hsrnoise.SPL_corr',0),('hsrnoise.OASPL30',0.0),('hsrnoise.OASPL60',0.0),('hsrnoise.OASPL90',0.0),('hsrnoise.OASPL120',0.0),('hsrnoise.OASPL150',0.0)])
SL4 = Case(inputs=[('point', 3),('dreaprep.Mach',0.25),('alt',1000.0),('dreaprep.PC',100.0),('hsrnoise.phi',90.0)], outputs=[('drea.CFG',0.0),('hsrnoise.thetas',0.0),('hsrnoise.Freq',0.0),('hsrnoise.SPL_corr',0),('hsrnoise.OASPL30',0.0),('hsrnoise.OASPL60',0.0),('hsrnoise.OASPL90',0.0),('hsrnoise.OASPL120',0.0),('hsrnoise.OASPL150',0.0)])
cases = ListCaseIterator([FO1,FO2,App,SL1,SL2,SL3,SL4])
db_recorder = DBCaseRecorder()
self.add('geo', Geometry())
self.add('dreaprep', DREAprep())
self.add('drea', DREA())
self.add('hsrnoise', HSRNOISE())
self.add('ACDgen', ACDgen())
self.add('analysis',CaseIteratorDriver())
self.analysis.iterator = cases
self.analysis.recorders = [db_recorder]
self.ACDgen.case_data = db_recorder.get_iterator()
# Set up the workflows
#---------------------------
#self.analysis.workflow.add(['dreaprep', 'drea', 'hsrnoise'])
#self.driver.workflow.add(['analysis','ACDgen'])
self.driver.workflow.add(['dreaprep', 'drea', 'hsrnoise'])
# Connections
#---------------------------
self.connect('geo',['drea.geo_in','hsrnoise.geo_in'])
self.connect('alt',['dreaprep.alt','hsrnoise.ALTEVO'])
self.connect('dreaprep.flow_out','drea.flow_in')
self.connect('drea.flow_out','hsrnoise.flow_in')
self.connect('drea.CFG','hsrnoise.CFG')
示例10: test_db_to_dict
# 需要导入模块: from openmdao.lib.casehandlers.api import DBCaseRecorder [as 别名]
# 或者: from openmdao.lib.casehandlers.api.DBCaseRecorder import get_iterator [as 别名]
def test_db_to_dict(self):
tmpdir = tempfile.mkdtemp()
dfile = os.path.join(tmpdir, 'junk.db')
recorder = DBCaseRecorder(dfile)
# create some Cases where some are missing a variable
outputs = ['comp1.z', 'comp2.z']
cases = []
for i in range(10):
if i>1:
msg = ''
else:
msg = 'an error occurred'
if i<5:
inputs = [('comp1.x', i), ('comp1.y', i*2), ('comp1.y2', i*3)]
else:
inputs = [('comp1.x', i), ('comp1.y', i*2)]
recorder.record(Case(inputs=inputs, outputs=outputs, msg=msg))
varnames = ['comp1.x','comp1.y','comp1.y2']
varinfo = case_db_to_dict(dfile, varnames)
self.assertEqual(len(varinfo), 3)
# each var list should have 3 data values in it (5 with the required variables minus
# 2 with errors
for name,lst in varinfo.items():
self.assertEqual(len(lst), 3)
# now use caseiter_to_dict to grab the same data
varinfo = caseiter_to_dict(recorder.get_iterator(), varnames)
# each var list should have 3 data values in it (5 with the required variables minus
# 2 with errors
for name,lst in varinfo.items():
self.assertEqual(len(lst), 3)
try:
shutil.rmtree(tmpdir)
except OSError:
logging.error("problem removing directory %s" % tmpdir)
示例11: configure
# 需要导入模块: from openmdao.lib.casehandlers.api import DBCaseRecorder [as 别名]
# 或者: from openmdao.lib.casehandlers.api.DBCaseRecorder import get_iterator [as 别名]
def configure(self):
self._tdir = mkdtemp()
self.comp_name = None
#check to make sure no more than one component is being referenced
compnames = set()
for param in self.parent.get_parameters().values():
compnames.update(param.get_referenced_compnames())
if len(compnames) > 1:
self.parent.raise_exception('The EGO architecture can only be used on one'
'component at a time, but parameters from %s '
'were added to the problem formulation.' %compnames,
ValueError)
self.comp_name = compnames.pop()
#change name of component to add '_model' to it.
# lets me name the metamodel as the old name
self.comp= getattr(self.parent,self.comp_name)
self.comp.name = "%s_model"%self.comp_name
#add in the metamodel
meta_model = self.parent.add(self.comp_name,MetaModel()) #metamodel now replaces old component with same name
meta_model.default_surrogate = KrigingSurrogate()
meta_model.model = self.comp
meta_model_recorder = DBCaseRecorder(os.path.join(self._tdir,'trainer.db'))
meta_model.recorder = meta_model_recorder
meta_model.force_execute = True
EI = self.parent.add("EI",ExpectedImprovement())
self.objective = self.parent.get_objectives().keys()[0]
EI.criteria = self.objective
pfilter = self.parent.add("filter",ParetoFilter())
pfilter.criteria = [self.objective]
pfilter.case_sets = [meta_model_recorder.get_iterator(),]
pfilter.force_execute = True
#Driver Configuration
DOE_trainer = self.parent.add("DOE_trainer",DOEdriver())
DOE_trainer.sequential = True
DOE_trainer.DOEgenerator = OptLatinHypercube(num_samples=self.initial_DOE_size)
for name,param in self.parent.get_parameters().iteritems():
DOE_trainer.add_parameter(param)
DOE_trainer.add_event("%s.train_next"%self.comp_name)
DOE_trainer.case_outputs = [self.objective]
DOE_trainer.recorders = [DBCaseRecorder(':memory:')]
EI_opt = self.parent.add("EI_opt",Genetic())
EI_opt.opt_type = "maximize"
EI_opt.population_size = 100
EI_opt.generations = 10
#EI_opt.selection_method = "tournament"
for name,param in self.parent.get_parameters().iteritems():
EI_opt.add_parameter(param)
EI_opt.add_objective("EI.%s"%self.EI_PI)
retrain = self.parent.add("retrain",Driver())
retrain.recorders = self.data_recorders
retrain.add_event("%s.train_next"%self.comp_name)
iter = self.parent.add("iter",IterateUntil())
iter.max_iterations = self.sample_iterations
iter.add_stop_condition('EI.PI <= %s'%self.min_ei_pi)
#Data Connections
self.parent.connect("filter.pareto_set","EI.best_case")
self.parent.connect(self.objective,"EI.predicted_value")
#Iteration Heirarchy
self.parent.driver.workflow.add(['DOE_trainer', 'iter'])
#DOE_trainer.workflow.add(self.comp_name)
iter.workflow = SequentialWorkflow()
iter.workflow.add(['filter', 'EI_opt', 'retrain'])
#EI_opt.workflow.add([self.comp_name,'EI'])
retrain.workflow.add(self.comp_name)