本文整理汇总了Python中openmdao.core.Problem.root方法的典型用法代码示例。如果您正苦于以下问题:Python Problem.root方法的具体用法?Python Problem.root怎么用?Python Problem.root使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类openmdao.core.Problem
的用法示例。
在下文中一共展示了Problem.root方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_double_arraycomp
# 需要导入模块: from openmdao.core import Problem [as 别名]
# 或者: from openmdao.core.Problem import root [as 别名]
def test_double_arraycomp(self):
# Mainly testing a bug in the array return for multiple arrays
group = Group()
group.add('x_param1', IndepVarComp('x1', np.ones((2))), promotes=['*'])
group.add('x_param2', IndepVarComp('x2', np.ones((2))), promotes=['*'])
group.add('mycomp', DoubleArrayComp(), promotes=['*'])
prob = Problem(impl=impl)
prob.root = group
prob.root.ln_solver = PetscKSP()
prob.setup(check=False)
prob.run()
Jbase = group.mycomp.JJ
J = prob.calc_gradient(['x1', 'x2'], ['y1', 'y2'], mode='fwd',
return_format='array')
diff = np.linalg.norm(J - Jbase)
assert_rel_error(self, diff, 0.0, 1e-8)
J = prob.calc_gradient(['x1', 'x2'], ['y1', 'y2'], mode='fd',
return_format='array')
diff = np.linalg.norm(J - Jbase)
assert_rel_error(self, diff, 0.0, 1e-8)
J = prob.calc_gradient(['x1', 'x2'], ['y1', 'y2'], mode='rev',
return_format='array')
diff = np.linalg.norm(J - Jbase)
assert_rel_error(self, diff, 0.0, 1e-8)
示例2: test_converge_diverge_compfd
# 需要导入模块: from openmdao.core import Problem [as 别名]
# 或者: from openmdao.core.Problem import root [as 别名]
def test_converge_diverge_compfd(self):
prob = Problem(impl=impl)
prob.root = ConvergeDivergePar()
prob.root.ln_solver = PetscKSP()
# fd comp2 and comp5. each is under a par group
prob.root.par1.comp2.fd_options['force_fd'] = True
prob.root.par2.comp5.fd_options['force_fd'] = True
prob.setup(check=False)
prob.run()
# Make sure value is fine.
assert_rel_error(self, prob['comp7.y1'], -102.7, 1e-6)
indep_list = ['p.x']
unknown_list = ['comp7.y1']
J = prob.calc_gradient(indep_list, unknown_list, mode='fwd', return_format='dict')
assert_rel_error(self, J['comp7.y1']['p.x'][0][0], -40.75, 1e-6)
J = prob.calc_gradient(indep_list, unknown_list, mode='rev', return_format='dict')
assert_rel_error(self, J['comp7.y1']['p.x'][0][0], -40.75, 1e-6)
J = prob.calc_gradient(indep_list, unknown_list, mode='fd', return_format='dict')
assert_rel_error(self, J['comp7.y1']['p.x'][0][0], -40.75, 1e-6)
示例3: test_simple_deriv_xfer
# 需要导入模块: from openmdao.core import Problem [as 别名]
# 或者: from openmdao.core.Problem import root [as 别名]
def test_simple_deriv_xfer(self):
prob = Problem(impl=impl)
prob.root = FanInGrouped()
prob.setup(check=False)
prob.root.comp3.dpmat[None]['x1'] = 7.
prob.root.comp3.dpmat[None]['x2'] = 11.
prob.root._transfer_data(mode='rev', deriv=True)
if not MPI or self.comm.rank == 0:
self.assertEqual(prob.root.sub.comp1.dumat[None]['y'], 7.)
if not MPI or self.comm.rank == 1:
self.assertEqual(prob.root.sub.comp2.dumat[None]['y'], 11.)
prob.root.comp3.dpmat[None]['x1'] = 0.
prob.root.comp3.dpmat[None]['x2'] = 0.
self.assertEqual(prob.root.comp3.dpmat[None]['x1'], 0.)
self.assertEqual(prob.root.comp3.dpmat[None]['x2'], 0.)
prob.root._transfer_data(mode='fwd', deriv=True)
self.assertEqual(prob.root.comp3.dpmat[None]['x1'], 7.)
self.assertEqual(prob.root.comp3.dpmat[None]['x2'], 11.)
示例4: test_fd_options_meta_step_size
# 需要导入模块: from openmdao.core import Problem [as 别名]
# 或者: from openmdao.core.Problem import root [as 别名]
def test_fd_options_meta_step_size(self):
class MetaParaboloid(Component):
""" Evaluates the equation f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3 """
def __init__(self):
super(MetaParaboloid, self).__init__()
# Params
self.add_param('x', 1.0, fd_step_size = 1.0e5)
self.add_param('y', 1.0, fd_step_size = 1.0e5)
# Unknowns
self.add_output('f_xy', 0.0)
def solve_nonlinear(self, params, unknowns, resids):
"""f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3
Optimal solution (minimum): x = 6.6667; y = -7.3333
"""
x = params['x']
y = params['y']
f_xy = ((x-3.0)**2 + x*y + (y+4.0)**2 - 3.0)
unknowns['f_xy'] = f_xy
def jacobian(self, params, unknowns, resids):
"""Analytical derivatives"""
x = params['x']
y = params['y']
J = {}
J['f_xy', 'x'] = (2.0*x - 6.0 + y)
J['f_xy', 'y'] = (2.0*y + 8.0 + x)
return J
prob = Problem()
prob.root = Group()
comp = prob.root.add('comp', MetaParaboloid())
prob.root.add('p1', ParamComp('x', 15.0))
prob.root.add('p2', ParamComp('y', 15.0))
prob.root.connect('p1.x', 'comp.x')
prob.root.connect('p2.y', 'comp.y')
comp.fd_options['force_fd'] = True
prob.setup(check=False)
prob.run()
# Make sure bad meta step_size is used
# Derivative should be way high with this.
J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
self.assertGreater(J['comp.f_xy']['p1.x'][0][0], 1000.0)
示例5: test_simple_jac
# 需要导入模块: from openmdao.core import Problem [as 别名]
# 或者: from openmdao.core.Problem import root [as 别名]
def test_simple_jac(self):
group = Group()
group.add('x_param', IndepVarComp('x', 1.0), promotes=['*'])
group.add('mycomp', ExecComp(['y=2.0*x']), promotes=['x', 'y'])
prob = Problem()
prob.root = group
prob.root.ln_solver = DirectSolver()
prob.setup(check=False)
prob.run()
J = prob.calc_gradient(['x'], ['y'], mode='fwd', return_format='dict')
assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)
J = prob.calc_gradient(['x'], ['y'], mode='rev', return_format='dict')
assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)
示例6: test_simple
# 需要导入模块: from openmdao.core import Problem [as 别名]
# 或者: from openmdao.core.Problem import root [as 别名]
def test_simple(self):
group = Group()
group.add('x_param', IndepVarComp('x', 1.0), promotes=['*'])
group.add('mycomp', SimpleCompDerivMatVec(), promotes=['x', 'y'])
prob = Problem(impl=impl)
prob.root = group
prob.root.ln_solver = PetscKSP()
prob.setup(check=False)
prob.run()
J = prob.calc_gradient(['x'], ['y'], mode='fwd', return_format='dict')
assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)
J = prob.calc_gradient(['x'], ['y'], mode='rev', return_format='dict')
assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)
示例7: test_fd_options_form
# 需要导入模块: from openmdao.core import Problem [as 别名]
# 或者: from openmdao.core.Problem import root [as 别名]
def test_fd_options_form(self):
prob = Problem()
prob.root = Group()
comp = prob.root.add('comp', Paraboloid())
prob.root.add('p1', ParamComp('x', 15.0))
prob.root.add('p2', ParamComp('y', 15.0))
prob.root.connect('p1.x', 'comp.x')
prob.root.connect('p2.y', 'comp.y')
comp.fd_options['force_fd'] = True
comp.fd_options['form'] = 'forward'
param_list = ['p1.x']
unknowns_list = ['comp.f_xy']
prob.setup(check=False)
prob.run()
J = prob.calc_gradient(param_list, unknowns_list, return_format='dict')
assert_rel_error(self, J['comp.f_xy']['p1.x'][0][0], 39.0, 1e-6)
# Make sure it gives good result with small stepsize
comp.fd_options['form'] = 'backward'
J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
assert_rel_error(self, J['comp.f_xy']['p1.x'][0][0], 39.0, 1e-6)
# Make sure it gives good result with small stepsize
comp.fd_options['form'] = 'central'
J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
assert_rel_error(self, J['comp.f_xy']['p1.x'][0][0], 39.0, 1e-6)
# Now, Make sure we really are going foward and backward
comp.fd_options['form'] = 'forward'
comp.fd_options['step_size'] = 1e3
J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
self.assertGreater(J['comp.f_xy']['p1.x'][0][0], 0.0)
comp.fd_options['form'] = 'backward'
J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
self.assertLess(J['comp.f_xy']['p1.x'][0][0], 0.0)
# Central should get pretty close even for the bad stepsize
comp.fd_options['form'] = 'central'
J = prob.calc_gradient(['p1.x'], ['comp.f_xy'], return_format='dict')
assert_rel_error(self, J['comp.f_xy']['p1.x'][0][0], 39.0, 1e-1)
示例8: test_simple_in_group_matvec
# 需要导入模块: from openmdao.core import Problem [as 别名]
# 或者: from openmdao.core.Problem import root [as 别名]
def test_simple_in_group_matvec(self):
group = Group()
sub = group.add('sub', Group(), promotes=['x', 'y'])
group.add('x_param', ParamComp('x', 1.0), promotes=['*'])
sub.add('mycomp', SimpleCompDerivMatVec(), promotes=['x', 'y'])
prob = Problem()
prob.root = group
prob.root.ln_solver = ExplicitSolver()
prob.setup(check=False)
prob.run()
J = prob.calc_gradient(['x'], ['y'], mode='fwd', return_format='dict')
assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)
J = prob.calc_gradient(['x'], ['y'], mode='rev', return_format='dict')
assert_rel_error(self, J['y']['x'][0][0], 2.0, 1e-6)
示例9: test_no_derivatives
# 需要导入模块: from openmdao.core import Problem [as 别名]
# 或者: from openmdao.core.Problem import root [as 别名]
def test_no_derivatives(self):
prob = Problem()
prob.root = Group()
comp = prob.root.add('comp', ExecComp('y=x*2.0'))
prob.root.add('p1', ParamComp('x', 2.0))
prob.root.connect('p1.x', 'comp.x')
comp.fd_options['force_fd'] = True
prob.setup(check=False)
prob.run()
J = prob.calc_gradient(['p1.x'], ['comp.y'], mode='fwd', return_format='dict')
assert_rel_error(self, J['comp.y']['p1.x'][0][0], 2.0, 1e-6)
J = prob.calc_gradient(['p1.x'], ['comp.y'], mode='rev', return_format='dict')
assert_rel_error(self, J['comp.y']['p1.x'][0][0], 2.0, 1e-6)
示例10: test_fan_in_grouped
# 需要导入模块: from openmdao.core import Problem [as 别名]
# 或者: from openmdao.core.Problem import root [as 别名]
def test_fan_in_grouped(self):
prob = Problem()
prob.root = FanInGrouped()
prob.root.ln_solver = ExplicitSolver()
prob.setup(check=False)
prob.run()
param_list = ['p1.x1', 'p2.x2']
unknown_list = ['comp3.y']
J = prob.calc_gradient(param_list, unknown_list, mode='fwd', return_format='dict')
assert_rel_error(self, J['comp3.y']['p1.x1'][0][0], -6.0, 1e-6)
assert_rel_error(self, J['comp3.y']['p2.x2'][0][0], 35.0, 1e-6)
J = prob.calc_gradient(param_list, unknown_list, mode='rev', return_format='dict')
assert_rel_error(self, J['comp3.y']['p1.x1'][0][0], -6.0, 1e-6)
assert_rel_error(self, J['comp3.y']['p2.x2'][0][0], 35.0, 1e-6)
示例11: test_fan_out
# 需要导入模块: from openmdao.core import Problem [as 别名]
# 或者: from openmdao.core.Problem import root [as 别名]
def test_fan_out(self):
prob = Problem()
prob.root = FanOut()
prob.root.ln_solver = DirectSolver()
prob.setup(check=False)
prob.run()
indep_list = ['p.x']
unknown_list = ['comp2.y', "comp3.y"]
J = prob.calc_gradient(indep_list, unknown_list, mode='fwd', return_format='dict')
assert_rel_error(self, J['comp2.y']['p.x'][0][0], -6.0, 1e-6)
assert_rel_error(self, J['comp3.y']['p.x'][0][0], 15.0, 1e-6)
J = prob.calc_gradient(indep_list, unknown_list, mode='rev', return_format='dict')
assert_rel_error(self, J['comp2.y']['p.x'][0][0], -6.0, 1e-6)
assert_rel_error(self, J['comp3.y']['p.x'][0][0], 15.0, 1e-6)
示例12: test_fan_out_grouped
# 需要导入模块: from openmdao.core import Problem [as 别名]
# 或者: from openmdao.core.Problem import root [as 别名]
def test_fan_out_grouped(self):
prob = Problem(impl=impl)
prob.root = FanOutGrouped()
prob.root.ln_solver = PetscKSP()
prob.setup(check=False)
prob.run()
indep_list = ['p.x']
unknown_list = ['sub.comp2.y', "sub.comp3.y"]
J = prob.calc_gradient(indep_list, unknown_list, mode='fwd', return_format='dict')
assert_rel_error(self, J['sub.comp2.y']['p.x'][0][0], -6.0, 1e-6)
assert_rel_error(self, J['sub.comp3.y']['p.x'][0][0], 15.0, 1e-6)
J = prob.calc_gradient(indep_list, unknown_list, mode='rev', return_format='dict')
assert_rel_error(self, J['sub.comp2.y']['p.x'][0][0], -6.0, 1e-6)
assert_rel_error(self, J['sub.comp3.y']['p.x'][0][0], 15.0, 1e-6)
示例13: test_fan_in
# 需要导入模块: from openmdao.core import Problem [as 别名]
# 或者: from openmdao.core.Problem import root [as 别名]
def test_fan_in(self):
prob = Problem(impl=impl)
prob.root = FanIn()
prob.root.ln_solver = PetscKSP()
prob.setup(check=False)
prob.run()
indep_list = ['p1.x1', 'p2.x2']
unknown_list = ['comp3.y']
J = prob.calc_gradient(indep_list, unknown_list, mode='fwd', return_format='dict')
assert_rel_error(self, J['comp3.y']['p1.x1'][0][0], -6.0, 1e-6)
assert_rel_error(self, J['comp3.y']['p2.x2'][0][0], 35.0, 1e-6)
J = prob.calc_gradient(indep_list, unknown_list, mode='rev', return_format='dict')
assert_rel_error(self, J['comp3.y']['p1.x1'][0][0], -6.0, 1e-6)
assert_rel_error(self, J['comp3.y']['p2.x2'][0][0], 35.0, 1e-6)
示例14: test_single_diamond
# 需要导入模块: from openmdao.core import Problem [as 别名]
# 或者: from openmdao.core.Problem import root [as 别名]
def test_single_diamond(self):
prob = Problem(impl=impl)
prob.root = SingleDiamond()
prob.root.ln_solver = PetscKSP()
prob.setup(check=False)
prob.run()
indep_list = ['p.x']
unknown_list = ['comp4.y1', 'comp4.y2']
J = prob.calc_gradient(indep_list, unknown_list, mode='fwd', return_format='dict')
assert_rel_error(self, J['comp4.y1']['p.x'][0][0], 25, 1e-6)
assert_rel_error(self, J['comp4.y2']['p.x'][0][0], -40.5, 1e-6)
J = prob.calc_gradient(indep_list, unknown_list, mode='rev', return_format='dict')
assert_rel_error(self, J['comp4.y1']['p.x'][0][0], 25, 1e-6)
assert_rel_error(self, J['comp4.y2']['p.x'][0][0], -40.5, 1e-6)
示例15: test_sellar_derivs_grouped
# 需要导入模块: from openmdao.core import Problem [as 别名]
# 或者: from openmdao.core.Problem import root [as 别名]
def test_sellar_derivs_grouped(self):
prob = Problem(impl=impl)
prob.root = SellarDerivativesGrouped()
prob.root.ln_solver = PetscKSP()
prob.root.mda.nl_solver.options['atol'] = 1e-12
prob.setup(check=False)
prob.run()
# Just make sure we are at the right answer
assert_rel_error(self, prob['y1'], 25.58830273, .00001)
assert_rel_error(self, prob['y2'], 12.05848819, .00001)
indep_list = ['x', 'z']
unknown_list = ['obj', 'con1', 'con2']
Jbase = {}
Jbase['con1'] = {}
Jbase['con1']['x'] = -0.98061433
Jbase['con1']['z'] = np.array([-9.61002285, -0.78449158])
Jbase['con2'] = {}
Jbase['con2']['x'] = 0.09692762
Jbase['con2']['z'] = np.array([1.94989079, 1.0775421 ])
Jbase['obj'] = {}
Jbase['obj']['x'] = 2.98061392
Jbase['obj']['z'] = np.array([9.61001155, 1.78448534])
J = prob.calc_gradient(indep_list, unknown_list, mode='fwd', return_format='dict')
for key1, val1 in Jbase.items():
for key2, val2 in val1.items():
assert_rel_error(self, J[key1][key2], val2, .00001)
J = prob.calc_gradient(indep_list, unknown_list, mode='rev', return_format='dict')
for key1, val1 in Jbase.items():
for key2, val2 in val1.items():
assert_rel_error(self, J[key1][key2], val2, .00001)
prob.root.fd_options['form'] = 'central'
J = prob.calc_gradient(indep_list, unknown_list, mode='fd', return_format='dict')
for key1, val1 in Jbase.items():
for key2, val2 in val1.items():
assert_rel_error(self, J[key1][key2], val2, .00001)