本文整理汇总了Python中obspy.core.event.Magnitude.method_id方法的典型用法代码示例。如果您正苦于以下问题:Python Magnitude.method_id方法的具体用法?Python Magnitude.method_id怎么用?Python Magnitude.method_id使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类obspy.core.event.Magnitude
的用法示例。
在下文中一共展示了Magnitude.method_id方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __toMagnitude
# 需要导入模块: from obspy.core.event import Magnitude [as 别名]
# 或者: from obspy.core.event.Magnitude import method_id [as 别名]
def __toMagnitude(parser, magnitude_el, origin):
"""
Parses a given magnitude etree element.
:type parser: :class:`~obspy.core.util.xmlwrapper.XMLParser`
:param parser: Open XMLParser object.
:type magnitude_el: etree.element
:param magnitude_el: magnitude element to be parsed.
:return: A ObsPy :class:`~obspy.core.event.Magnitude` object.
"""
global CURRENT_TYPE
mag = Magnitude()
mag.resource_id = ResourceIdentifier(prefix="/".join([RESOURCE_ROOT, "magnitude"]))
mag.origin_id = origin.resource_id
mag.mag, mag.mag_errors = __toFloatQuantity(parser, magnitude_el, "mag")
# obspyck used to write variance (instead of std) in magnitude error fields
if CURRENT_TYPE == "obspyck":
if mag.mag_errors.uncertainty is not None:
mag.mag_errors.uncertainty = math.sqrt(mag.mag_errors.uncertainty)
mag.magnitude_type = parser.xpath2obj("type", magnitude_el)
mag.station_count = parser.xpath2obj("stationCount", magnitude_el, int)
mag.method_id = "%s/magnitude_method/%s/1" % (RESOURCE_ROOT,
parser.xpath2obj('program', magnitude_el))
if str(mag.method_id).lower().endswith("none"):
mag.method_id = None
return mag
示例2: __toMagnitude
# 需要导入模块: from obspy.core.event import Magnitude [as 别名]
# 或者: from obspy.core.event.Magnitude import method_id [as 别名]
def __toMagnitude(parser, magnitude_el):
"""
Parses a given magnitude etree element.
:type parser: :class:`~obspy.core.util.xmlwrapper.XMLParser`
:param parser: Open XMLParser object.
:type magnitude_el: etree.element
:param magnitude_el: magnitude element to be parsed.
:return: A ObsPy :class:`~obspy.core.event.Magnitude` object.
"""
mag = Magnitude()
mag.mag, mag.mag_errors = __toFloatQuantity(parser, magnitude_el, "mag")
mag.magnitude_type = parser.xpath2obj("type", magnitude_el)
mag.station_count = parser.xpath2obj("stationCount", magnitude_el, int)
mag.method_id = parser.xpath2obj("program", magnitude_el)
return mag
示例3: _on_file_save
# 需要导入模块: from obspy.core.event import Magnitude [as 别名]
# 或者: from obspy.core.event.Magnitude import method_id [as 别名]
def _on_file_save(self):
"""
Creates a new obspy.core.event.Magnitude object and writes the moment
magnitude to it.
"""
# Get the save filename.
filename = QtGui.QFileDialog.getSaveFileName(caption="Save as...")
filename = os.path.abspath(str(filename))
mag = Magnitude()
mag.mag = self.final_result["moment_magnitude"]
mag.magnitude_type = "Mw"
mag.station_count = self.final_result["station_count"]
mag.evaluation_mode = "manual"
# Link to the used origin.
mag.origin_id = self.current_state["event"].origins[0].resource_id
mag.method_id = "Magnitude picker Krischer"
# XXX: Potentially change once this program gets more stable.
mag.evaluation_status = "preliminary"
# Write the other results as Comments.
mag.comments.append( \
Comment("Seismic moment in Nm: %g" % \
self.final_result["seismic_moment"]))
mag.comments.append( \
Comment("Circular source radius in m: %.2f" % \
self.final_result["source_radius"]))
mag.comments.append( \
Comment("Stress drop in Pa: %.2f" % \
self.final_result["stress_drop"]))
mag.comments.append( \
Comment("Very rough Q estimation: %.1f" % \
self.final_result["quality_factor"]))
event = copy.deepcopy(self.current_state["event"])
event.magnitudes.append(mag)
cat = Catalog()
cat.events.append(event)
cat.write(filename, format="quakeml")
示例4: calculate_moment_magnitudes
# 需要导入模块: from obspy.core.event import Magnitude [as 别名]
# 或者: from obspy.core.event.Magnitude import method_id [as 别名]
#.........这里部分代码省略.........
corner_freqs = []
for trace in stream:
# Get the index of the pick.
pick_index = int(round((pick.time - trace.stats.starttime) / \
trace.stats.delta))
# Choose date window 0.5 seconds before and 1 second after pick.
data_window = trace.data[pick_index - \
int(TIME_BEFORE_PICK * trace.stats.sampling_rate): \
pick_index + int(TIME_AFTER_PICK * trace.stats.sampling_rate)]
# Calculate the spectrum.
spec, freq = mtspec.mtspec(data_window, trace.stats.delta, 2)
try:
fit = fit_spectrum(spec, freq, pick.time - origin_time,
spec.max(), 10.0)
except:
continue
if fit is None:
continue
Omega_0, f_c, err, _ = fit
Omega_0 = np.sqrt(Omega_0)
omegas.append(Omega_0)
corner_freqs.append(f_c)
M_0 = 4.0 * np.pi * DENSITY * velocity ** 3 * distance * \
np.sqrt(omegas[0] ** 2 + omegas[1] ** 2 + omegas[2] ** 2) / \
radiation_pattern
r = 3 * k * V_S / sum(corner_freqs)
moments.append(M_0)
source_radii.append(r)
corner_frequencies.extend(corner_freqs)
if not len(moments):
print "No moments could be calculated for event %s" % \
event.resource_id.resource_id
continue
# Calculate the seismic moment via basic statistics.
moments = np.array(moments)
moment = moments.mean()
moment_std = moments.std()
corner_frequencies = np.array(corner_frequencies)
corner_frequency = corner_frequencies.mean()
corner_frequency_std = corner_frequencies.std()
# Calculate the source radius.
source_radii = np.array(source_radii)
source_radius = source_radii.mean()
source_radius_std = source_radii.std()
# Calculate the stress drop of the event based on the average moment and
# source radii.
stress_drop = (7 * moment) / (16 * source_radius ** 3)
stress_drop_std = np.sqrt((stress_drop ** 2) * \
(((moment_std ** 2) / (moment ** 2)) + \
(9 * source_radius * source_radius_std ** 2)))
if source_radius > 0 and source_radius_std < source_radius:
print "Source radius:", source_radius, " Std:", source_radius_std
print "Stress drop:", stress_drop / 1E5, " Std:", stress_drop_std / 1E5
Mw = 2.0 / 3.0 * (np.log10(moment) - 9.1)
Mw_std = 2.0 / 3.0 * moment_std / (moment * np.log(10))
Mws_std.append(Mw_std)
Mws.append(Mw)
Mls.append(local_magnitude)
calc_diff = abs(Mw - local_magnitude)
Mw = ("%.3f" % Mw).rjust(7)
Ml = ("%.3f" % local_magnitude).rjust(7)
diff = ("%.3e" % calc_diff).rjust(7)
ret_string = colorama.Fore.GREEN + \
"For event %s: Ml=%s | Mw=%s | " % (event.resource_id.resource_id,
Ml, Mw)
if calc_diff >= 1.0:
ret_string += colorama.Fore.RED
ret_string += "Diff=%s" % diff
ret_string += colorama.Fore.GREEN
ret_string += " | Determined at %i stations" % len(moments)
ret_string += colorama.Style.RESET_ALL
print ret_string
mag = Magnitude()
mag.mag = Mw
mag.mag_errors.uncertainty = Mw_std
mag.magnitude_type = "Mw"
mag.origin_id = event.origins[0].resource_id
mag.method_id = "smi:com.github/krischer/moment_magnitude_calculator/automatic/1"
mag.station_count = len(moments)
mag.evaluation_mode = "automatic"
mag.evaluation_status = "preliminary"
mag.comments.append(Comment( \
"Seismic Moment=%e Nm; standard deviation=%e" % (moment,
moment_std)))
mag.comments.append(Comment("Custom fit to Boatwright spectrum"))
if source_radius > 0 and source_radius_std < source_radius:
mag.comments.append(Comment( \
"Source radius=%.2fm; standard deviation=%.2f" % (source_radius,
source_radius_std)))
event.magnitudes.append(mag)
print "Writing output file..."
cat.write(output_file, format="quakeml")