本文整理汇总了Python中nupic.utils.MovingAverage类的典型用法代码示例。如果您正苦于以下问题:Python MovingAverage类的具体用法?Python MovingAverage怎么用?Python MovingAverage使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了MovingAverage类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testMovingAverageInstance
def testMovingAverageInstance(self):
"""
Test that the (internal) moving average maintains the averages correctly,
even for null initial condition and when the number of values goes over
windowSize. Pass in integers and floats.
this is for the instantce method next()
"""
ma = MovingAverage(windowSize=3)
newAverage = ma.next(3)
self.assertEqual(newAverage, 3.0)
self.assertListEqual(ma.getSlidingWindow(), [3.0])
self.assertEqual(ma.total, 3.0)
newAverage = ma.next(4)
self.assertEqual(newAverage, 3.5)
self.assertListEqual(ma.getSlidingWindow(), [3.0, 4.0])
self.assertEqual(ma.total, 7.0)
newAverage = ma.next(5)
self.assertEqual(newAverage, 4.0)
self.assertListEqual(ma.getSlidingWindow(), [3.0, 4.0, 5.0])
self.assertEqual(ma.total, 12.0)
# Ensure the first value gets popped
newAverage = ma.next(6)
self.assertEqual(newAverage, 5.0)
self.assertListEqual(ma.getSlidingWindow(), [4.0, 5.0, 6.0])
self.assertEqual(ma.total, 15.0)
示例2: testMovingAverageSlidingWindowInit
def testMovingAverageSlidingWindowInit(self):
"""
Test the slidingWindow value is correctly assigned when initializing a
new MovingAverage object.
"""
# With exisiting historical values; same values as tested in testMovingAverage()
ma = MovingAverage(windowSize=3, existingHistoricalValues=[3.0, 4.0, 5.0])
self.assertListEqual(ma.getSlidingWindow(), [3.0, 4.0, 5.0])
# Withoout exisiting historical values
ma = MovingAverage(windowSize=3)
self.assertListEqual(ma.getSlidingWindow(), [])
示例3: __init__
def __init__(self, slidingWindowSize = None, mode=MODE_PURE):
"""
@param slidingWindowSize (optional) - how many elements are summed up;
enables moving average on final anomaly score; int >= 0
@param mode (optional) - (string) how to compute anomaly;
possible values are:
- "pure" - the default, how much anomal the value is;
float 0..1 where 1=totally unexpected
- "likelihood" - uses the anomaly_likelihood code;
models probability of receiving this value and anomalyScore
- "weighted" - "pure" anomaly weighted by "likelihood"
(anomaly * likelihood)
"""
self._mode = mode
if slidingWindowSize is not None:
self._movingAverage = MovingAverage(windowSize=slidingWindowSize)
else:
self._movingAverage = None
if self._mode == Anomaly.MODE_LIKELIHOOD:
self._likelihood = AnomalyLikelihood() # probabilistic anomaly
if not self._mode in Anomaly._supportedModes:
raise ValueError("Invalid anomaly mode; only supported modes are: "
"Anomaly.MODE_PURE, Anomaly.MODE_LIKELIHOOD, "
"Anomaly.MODE_WEIGHTED; you used: %r" % self._mode)
示例4: _anomalyScoreMovingAverage
def _anomalyScoreMovingAverage(anomalyScores, windowSize=10, verbosity=0):
"""
Given a list of anomaly scores return a list of averaged records.
anomalyScores is assumed to be a list of records of the form:
[datetime.datetime(2013, 8, 10, 23, 0), 6.0, 1.0]
Each record in the returned list list contains:
[datetime, value, averagedScore]
*Note:* we only average the anomaly score.
"""
historicalValues = []
total = 0.0
averagedRecordList = [] # Aggregated records
for record in anomalyScores:
# Skip (but log) records without correct number of entries
if not isinstance(record, (list, tuple)) or len(record) != 3:
if verbosity >= 1:
print("Malformed record:", record)
continue
avg, historicalValues, total = MovingAverage.compute(historicalValues, total, record[2], windowSize)
averagedRecordList.append([record[0], record[1], avg])
if verbosity > 2:
print("Aggregating input record:", record)
print("Result:", [record[0], record[1], avg])
return averagedRecordList, historicalValues, total
示例5: __init__
def __init__(self, slidingWindowSize=None, mode=MODE_PURE, binaryAnomalyThreshold=None):
"""
@param slidingWindowSize (optional) - how many elements are summed up;
enables moving average on final anomaly score; int >= 0
@param mode (optional) - (string) how to compute anomaly;
possible values are:
- "pure" - the default, how much anomal the value is;
float 0..1 where 1=totally unexpected
- "likelihood" - uses the anomaly_likelihood code;
models probability of receiving this value and anomalyScore
- "weighted" - "pure" anomaly weighted by "likelihood"
(anomaly * likelihood)
@param binaryAnomalyThreshold (optional) - if set [0,1] anomaly score
will be discretized to 1/0 (1 if >= binaryAnomalyThreshold)
The transformation is applied after moving average is computed and updated.
"""
self._mode = mode
if slidingWindowSize is not None:
self._movingAverage = MovingAverage(windowSize=slidingWindowSize)
else:
self._movingAverage = None
if self._mode == Anomaly.MODE_LIKELIHOOD or self._mode == Anomaly.MODE_WEIGHTED:
self._likelihood = AnomalyLikelihood() # probabilistic anomaly
if not self._mode in Anomaly._supportedModes:
raise ValueError("Invalid anomaly mode; only supported modes are: "
"Anomaly.MODE_PURE, Anomaly.MODE_LIKELIHOOD, "
"Anomaly.MODE_WEIGHTED; you used: %r" % self._mode)
self._binaryThreshold = binaryAnomalyThreshold
if binaryAnomalyThreshold is not None and (
not isinstance(binaryAnomalyThreshold, float) or
binaryAnomalyThreshold >= 1.0 or
binaryAnomalyThreshold <= 0.0 ):
raise ValueError("Anomaly: binaryAnomalyThreshold must be from (0,1) "
"or None if disabled.")
示例6: __init__
def __init__(self,
slidingWindowSize=None,
mode=MODE_PURE,
binaryAnomalyThreshold=None):
self._mode = mode
if slidingWindowSize is not None:
self._movingAverage = MovingAverage(windowSize=slidingWindowSize)
else:
self._movingAverage = None
if (self._mode == Anomaly.MODE_LIKELIHOOD or
self._mode == Anomaly.MODE_WEIGHTED):
self._likelihood = AnomalyLikelihood() # probabilistic anomaly
else:
self._likelihood = None
if not self._mode in self._supportedModes:
raise ValueError("Invalid anomaly mode; only supported modes are: "
"Anomaly.MODE_PURE, Anomaly.MODE_LIKELIHOOD, "
"Anomaly.MODE_WEIGHTED; you used: %r" % self._mode)
self._binaryThreshold = binaryAnomalyThreshold
if binaryAnomalyThreshold is not None and (
not isinstance(binaryAnomalyThreshold, float) or
binaryAnomalyThreshold >= 1.0 or
binaryAnomalyThreshold <= 0.0 ):
raise ValueError("Anomaly: binaryAnomalyThreshold must be from (0,1) "
"or None if disabled.")
示例7: testSerialization
def testSerialization(self):
"""serialization using pickle"""
ma = MovingAverage(windowSize=3)
ma.next(3)
ma.next(4.5)
ma.next(5)
stored = pickle.dumps(ma)
restored = pickle.loads(stored)
self.assertEqual(restored, ma)
self.assertEqual(ma.next(6), restored.next(6))
示例8: __init__
def __init__(self, w, minval=None, maxval=None, periodic=False, n=0, radius=0,
resolution=0, name=None, verbosity=0, clipInput=True, forced=False):
self._learningEnabled = True
if periodic:
#Adaptive scalar encoders take non-periodic inputs only
raise Exception('Adaptive scalar encoder does not encode periodic inputs')
assert n!=0 #An adaptive encoder can only be intialized using n
super(AdaptiveScalarEncoder, self).__init__(w=w, n=n, minval=minval, maxval=maxval,
clipInput=True, name=name, verbosity=verbosity, forced=forced)
self.recordNum=0 #how many inputs have been sent to the encoder?
self.slidingWindow = MovingAverage(300)
示例9: testEquals
def testEquals(self):
ma = MovingAverage(windowSize=3)
maP = MovingAverage(windowSize=3)
self.assertEqual(ma, maP)
maN = MovingAverage(windowSize=10)
self.assertNotEqual(ma, maN)
ma = MovingAverage(windowSize=2, existingHistoricalValues=[3.0, 4.0, 5.0])
maP = MovingAverage(windowSize=2, existingHistoricalValues=[3.0, 4.0, 5.0])
self.assertEqual(ma, maP)
maP.next(6)
self.assertNotEqual(ma, maP)
ma.next(6)
self.assertEqual(ma, maP)
示例10: testMovingAverageReadWrite
def testMovingAverageReadWrite(self):
ma = MovingAverage(windowSize=3)
ma.next(3)
ma.next(4)
ma.next(5)
proto1 = MovingAverageProto.new_message()
ma.write(proto1)
# Write the proto to a temp file and read it back into a new proto
with tempfile.TemporaryFile() as f:
proto1.write(f)
f.seek(0)
proto2 = MovingAverageProto.read(f)
resurrectedMa = MovingAverage.read(proto2)
newAverage = ma.next(6)
self.assertEqual(newAverage, resurrectedMa.next(6))
self.assertListEqual(ma.getSlidingWindow(),
resurrectedMa.getSlidingWindow())
self.assertEqual(ma.total, resurrectedMa.total)
示例11: __init__
def __init__(self, w, minval=None, maxval=None, periodic=False, n=0, radius=0,
resolution=0, name=None, verbosity=0, clipInput=True, forced=False):
"""
[overrides nupic.encoders.scalar.ScalarEncoder.__init__]
"""
self._learningEnabled = True
if periodic:
#Adaptive scalar encoders take non-periodic inputs only
raise Exception('Adaptive scalar encoder does not encode periodic inputs') # check_later: is there any instance where adaptive adaptive input is periodic?
assert n!=0 #An adaptive encoder can only be intialized using n
super(AdaptiveScalarEncoder, self).__init__(w=w, n=n, minval=minval, maxval=maxval,
clipInput=True, name=name, verbosity=verbosity, forced=forced) # to_note: access ScalarEncoder's __init__
self.recordNum=0 #how many inputs have been sent to the encoder?
self.slidingWindow = MovingAverage(300)
示例12: updateAnomalyLikelihoods
def updateAnomalyLikelihoods(anomalyScores,
params,
verbosity=0): # pylint: disable=W0613
"""
Compute updated probabilities for anomalyScores using the given params.
:param anomalyScores: a list of records. Each record is a list with the
following three elements: [timestamp, value, score]
Example::
[datetime.datetime(2013, 8, 10, 23, 0), 6.0, 1.0]
:param params: the JSON dict returned by estimateAnomalyLikelihoods
:param verbosity: integer controlling extent of printouts for debugging
:type verbosity: int
:returns: 3-tuple consisting of:
- likelihoods
numpy array of likelihoods, one for each aggregated point
- avgRecordList
list of averaged input records
- params
an updated JSON object containing the state of this metric.
"""
if verbosity > 3:
print "In updateAnomalyLikelihoods."
print "Number of anomaly scores:", len(anomalyScores)
print "First 20:", anomalyScores[0:min(20, len(anomalyScores))]
print "Params:", params
if len(anomalyScores) == 0:
raise ValueError("Must have at least one anomalyScore")
if not isValidEstimatorParams(params):
raise ValueError("'params' is not a valid params structure")
# For backward compatibility.
if not params.has_key("historicalLikelihoods"):
params["historicalLikelihoods"] = [1.0]
# Compute moving averages of these new scores using the previous values
# as well as likelihood for these scores using the old estimator
historicalValues = params["movingAverage"]["historicalValues"]
total = params["movingAverage"]["total"]
windowSize = params["movingAverage"]["windowSize"]
aggRecordList = numpy.zeros(len(anomalyScores), dtype=float)
likelihoods = numpy.zeros(len(anomalyScores), dtype=float)
for i, v in enumerate(anomalyScores):
newAverage, historicalValues, total = (
MovingAverage.compute(historicalValues, total, v[2], windowSize)
)
aggRecordList[i] = newAverage
likelihoods[i] = normalProbability(newAverage, params["distribution"])
# Filter the likelihood values. First we prepend the historical likelihoods
# to the current set. Then we filter the values. We peel off the likelihoods
# to return and the last windowSize values to store for later.
likelihoods2 = params["historicalLikelihoods"] + list(likelihoods)
filteredLikelihoods = _filterLikelihoods(likelihoods2)
likelihoods[:] = filteredLikelihoods[-len(likelihoods):]
historicalLikelihoods = likelihoods2[-min(windowSize, len(likelihoods2)):]
# Update the estimator
newParams = {
"distribution": params["distribution"],
"movingAverage": {
"historicalValues": historicalValues,
"total": total,
"windowSize": windowSize,
},
"historicalLikelihoods": historicalLikelihoods,
}
assert len(newParams["historicalLikelihoods"]) <= windowSize
if verbosity > 3:
print "Number of likelihoods:", len(likelihoods)
print "First 20 likelihoods:", likelihoods[0:min(20, len(likelihoods))]
print "Leaving updateAnomalyLikelihoods."
return (likelihoods, aggRecordList, newParams)
示例13: read
def read(cls, proto):
encoder = super(AdaptiveScalarEncoder, cls).read(proto)
encoder.recordNum = proto.recordNum
encoder.slidingWindow = MovingAverage.read(proto.slidingWindow)
return encoder
示例14: AdaptiveScalarEncoder
class AdaptiveScalarEncoder(ScalarEncoder):
"""
This is an implementation of the scalar encoder that adapts the min and
max of the scalar encoder dynamically. This is essential to the streaming
model of the online prediction framework.
Initialization of an adapive encoder using resolution or radius is not supported;
it must be intitialized with n. This n is kept constant while the min and max of the
encoder changes.
The adaptive encoder must be have periodic set to false.
The adaptive encoder may be initialized with a minval and maxval or with `None`
for each of these. In the latter case, the min and max are set as the 1st and 99th
percentile over a window of the past 100 records.
**Note:** the sliding window may record duplicates of the values in the dataset,
and therefore does not reflect the statistical distribution of the input data
and may not be used to calculate the median, mean etc.
"""
def __init__(self, w, minval=None, maxval=None, periodic=False, n=0, radius=0,
resolution=0, name=None, verbosity=0, clipInput=True, forced=False):
"""
[overrides nupic.encoders.scalar.ScalarEncoder.__init__]
"""
self._learningEnabled = True
if periodic:
#Adaptive scalar encoders take non-periodic inputs only
raise Exception('Adaptive scalar encoder does not encode periodic inputs')
assert n!=0 #An adaptive encoder can only be intialized using n
super(AdaptiveScalarEncoder, self).__init__(w=w, n=n, minval=minval, maxval=maxval,
clipInput=True, name=name, verbosity=verbosity, forced=forced)
self.recordNum=0 #how many inputs have been sent to the encoder?
self.slidingWindow = MovingAverage(300)
def _setEncoderParams(self):
"""
Set the radius, resolution and range. These values are updated when minval
and/or maxval change.
"""
self.rangeInternal = float(self.maxval - self.minval)
self.resolution = float(self.rangeInternal) / (self.n - self.w)
self.radius = self.w * self.resolution
self.range = self.rangeInternal + self.resolution
# nInternal represents the output area excluding the possible padding on each side
self.nInternal = self.n - 2 * self.padding
# Invalidate the bucket values cache so that they get recomputed
self._bucketValues = None
def setFieldStats(self, fieldName, fieldStats):
"""
TODO: document
"""
#If the stats are not fully formed, ignore.
if fieldStats[fieldName]['min'] is None or \
fieldStats[fieldName]['max'] is None:
return
self.minval = fieldStats[fieldName]['min']
self.maxval = fieldStats[fieldName]['max']
if self.minval == self.maxval:
self.maxval+=1
self._setEncoderParams()
def _setMinAndMax(self, input, learn):
"""
Potentially change the minval and maxval using input.
**The learn flag is currently not supported by cla regions.**
"""
self.slidingWindow.next(input)
if self.minval is None and self.maxval is None:
self.minval = input
self.maxval = input+1 #When the min and max and unspecified and only one record has been encoded
self._setEncoderParams()
elif learn:
sorted = self.slidingWindow.getSlidingWindow()
sorted.sort()
minOverWindow = sorted[0]
maxOverWindow = sorted[len(sorted)-1]
if minOverWindow < self.minval:
#initialBump = abs(self.minval-minOverWindow)*(1-(min(self.recordNum, 200.0)/200.0))*2 #decrement minval more aggressively in the beginning
if self.verbosity >= 2:
print "Input {0!s}={1:.2f} smaller than minval {2:.2f}. Adjusting minval to {3:.2f}".format(self.name, input, self.minval, minOverWindow)
self.minval = minOverWindow #-initialBump
self._setEncoderParams()
#.........这里部分代码省略.........
示例15: Anomaly
class Anomaly(object):
"""Utility class for generating anomaly scores in different ways.
:param slidingWindowSize: [optional] - how many elements are summed up;
enables moving average on final anomaly score; int >= 0
:param mode: (string) [optional] how to compute anomaly, one of:
- :const:`nupic.algorithms.anomaly.Anomaly.MODE_PURE`
- :const:`nupic.algorithms.anomaly.Anomaly.MODE_LIKELIHOOD`
- :const:`nupic.algorithms.anomaly.Anomaly.MODE_WEIGHTED`
:param binaryAnomalyThreshold: [optional] if set [0,1] anomaly score
will be discretized to 1/0 (1 if >= binaryAnomalyThreshold)
The transformation is applied after moving average is computed.
"""
# anomaly modes supported
MODE_PURE = "pure"
"""
Default mode. The raw anomaly score as computed by
:func:`~.anomaly_likelihood.computeRawAnomalyScore`
"""
MODE_LIKELIHOOD = "likelihood"
"""
Uses the :class:`~.anomaly_likelihood.AnomalyLikelihood` class, which models
probability of receiving this value and anomalyScore
"""
MODE_WEIGHTED = "weighted"
"""
Multiplies the likelihood result with the raw anomaly score that was used to
generate the likelihood (anomaly * likelihood)
"""
_supportedModes = (MODE_PURE, MODE_LIKELIHOOD, MODE_WEIGHTED)
def __init__(self,
slidingWindowSize=None,
mode=MODE_PURE,
binaryAnomalyThreshold=None):
self._mode = mode
if slidingWindowSize is not None:
self._movingAverage = MovingAverage(windowSize=slidingWindowSize)
else:
self._movingAverage = None
if (self._mode == Anomaly.MODE_LIKELIHOOD or
self._mode == Anomaly.MODE_WEIGHTED):
self._likelihood = AnomalyLikelihood() # probabilistic anomaly
else:
self._likelihood = None
if not self._mode in self._supportedModes:
raise ValueError("Invalid anomaly mode; only supported modes are: "
"Anomaly.MODE_PURE, Anomaly.MODE_LIKELIHOOD, "
"Anomaly.MODE_WEIGHTED; you used: %r" % self._mode)
self._binaryThreshold = binaryAnomalyThreshold
if binaryAnomalyThreshold is not None and (
not isinstance(binaryAnomalyThreshold, float) or
binaryAnomalyThreshold >= 1.0 or
binaryAnomalyThreshold <= 0.0 ):
raise ValueError("Anomaly: binaryAnomalyThreshold must be from (0,1) "
"or None if disabled.")
def compute(self, activeColumns, predictedColumns,
inputValue=None, timestamp=None):
"""Compute the anomaly score as the percent of active columns not predicted.
:param activeColumns: array of active column indices
:param predictedColumns: array of columns indices predicted in this step
(used for anomaly in step T+1)
:param inputValue: (optional) value of current input to encoders
(eg "cat" for category encoder)
(used in anomaly-likelihood)
:param timestamp: (optional) date timestamp when the sample occured
(used in anomaly-likelihood)
:returns: the computed anomaly score; float 0..1
"""
# Start by computing the raw anomaly score.
anomalyScore = computeRawAnomalyScore(activeColumns, predictedColumns)
# Compute final anomaly based on selected mode.
if self._mode == Anomaly.MODE_PURE:
score = anomalyScore
elif self._mode == Anomaly.MODE_LIKELIHOOD:
if inputValue is None:
raise ValueError("Selected anomaly mode 'Anomaly.MODE_LIKELIHOOD' "
"requires 'inputValue' as parameter to compute() method. ")
probability = self._likelihood.anomalyProbability(
inputValue, anomalyScore, timestamp)
# low likelihood -> hi anomaly
score = 1 - probability
elif self._mode == Anomaly.MODE_WEIGHTED:
probability = self._likelihood.anomalyProbability(
#.........这里部分代码省略.........