本文整理汇总了Python中nupic.support.configuration.Configuration.get方法的典型用法代码示例。如果您正苦于以下问题:Python Configuration.get方法的具体用法?Python Configuration.get怎么用?Python Configuration.get使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nupic.support.configuration.Configuration
的用法示例。
在下文中一共展示了Configuration.get方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: newPosition
# 需要导入模块: from nupic.support.configuration import Configuration [as 别名]
# 或者: from nupic.support.configuration.Configuration import get [as 别名]
def newPosition(self, globalBestPosition, rng):
"""See comments in base class."""
# First, update the velocity. The new velocity is given as:
# v = (inertia * v) + (cogRate * r1 * (localBest-pos))
# + (socRate * r2 * (globalBest-pos))
#
# where r1 and r2 are random numbers between 0 and 1.0
lb=float(Configuration.get("nupic.hypersearch.randomLowerBound"))
ub=float(Configuration.get("nupic.hypersearch.randomUpperBound"))
self._velocity = (self._velocity * self._inertia + rng.uniform(lb, ub) *
self._cogRate * (self._bestPosition - self.getPosition()))
if globalBestPosition is not None:
self._velocity += rng.uniform(lb, ub) * self._socRate * (
globalBestPosition - self.getPosition())
# update position based on velocity
self._position += self._velocity
# Clip it
self._position = max(self.min, self._position)
self._position = min(self.max, self._position)
# Return it
return self.getPosition()
示例2: __init__
# 需要导入模块: from nupic.support.configuration import Configuration [as 别名]
# 或者: from nupic.support.configuration.Configuration import get [as 别名]
def __init__(self, clamodel, anomalyParams=None):
if anomalyParams is None:
anomalyParams = {}
if anomalyParams is None:
anomalyParams = {}
self.clamodel = clamodel
self._version = CLAModelClassifierHelper.__VERSION__
self._classificationMaxDist = 0.1
if 'autoDetectWaitRecords' not in anomalyParams or \
anomalyParams['autoDetectWaitRecords'] is None:
self._autoDetectWaitRecords = int(Configuration.get(
'nupic.model.temporalAnomaly.wait_records'))
else:
self._autoDetectWaitRecords = anomalyParams['autoDetectWaitRecords']
if 'autoDetectThreshold' not in anomalyParams or \
anomalyParams['autoDetectThreshold'] is None:
self._autoDetectThreshold = float(Configuration.get(
'nupic.model.temporalAnomaly.auto_detect_threshold'))
else:
self._autoDetectThreshold = anomalyParams['autoDetectThreshold']
if 'anomalyCacheRecords' not in anomalyParams or \
anomalyParams['anomalyCacheRecords'] is None:
self._history_length = int(Configuration.get(
'nupic.model.temporalAnomaly.window_length'))
else:
self._history_length = anomalyParams['anomalyCacheRecords']
if 'anomalyVectorType' not in anomalyParams or \
anomalyParams['anomalyVectorType'] is None:
self._vectorType = str(Configuration.get(
'nupic.model.temporalAnomaly.anomaly_vector'))
else:
self._vectorType = anomalyParams['anomalyVectorType']
self._activeColumnCount = \
self.clamodel._getSPRegion().getSelf().getParameter('numActiveColumnsPerInhArea')
# Storage for last run
self._anomalyVectorLength = None
self._classificationVector = numpy.array([])
self._prevPredictedColumns = numpy.array([])
self._prevTPCells = numpy.array([])
# Array of CLAClassificationRecord's used to recompute and get history
self.saved_states = []
self.saved_categories = []
示例3: _getCommonSteadyDBArgsDict
# 需要导入模块: from nupic.support.configuration import Configuration [as 别名]
# 或者: from nupic.support.configuration.Configuration import get [as 别名]
def _getCommonSteadyDBArgsDict():
""" Returns a dictionary of arguments for DBUtils.SteadyDB.SteadyDBConnection
constructor.
"""
return dict(
creator = pymysql,
host = Configuration.get('nupic.cluster.database.host'),
port = int(Configuration.get('nupic.cluster.database.port')),
user = Configuration.get('nupic.cluster.database.user'),
passwd = Configuration.get('nupic.cluster.database.passwd'),
charset = 'utf8',
use_unicode = True,
setsession = ['SET AUTOCOMMIT = 1'])
示例4: __init__
# 需要导入模块: from nupic.support.configuration import Configuration [as 别名]
# 或者: from nupic.support.configuration.Configuration import get [as 别名]
def __init__(self, steps="1", alpha=0.001, clVerbosity=0, implementation=None, maxCategoryCount=None):
# Set default implementation
if implementation is None:
implementation = Configuration.get("nupic.opf.sdrClassifier.implementation")
self.implementation = implementation
# Convert the steps designation to a list
self.steps = steps
self.stepsList = [int(i) for i in steps.split(",")]
self.alpha = alpha
self.verbosity = clVerbosity
# Initialize internal structures
self._sdrClassifier = None
self.learningMode = True
self.inferenceMode = False
self.maxCategoryCount = maxCategoryCount
self.recordNum = 0
# Flag to know if the compute() function is ever called. This is to
# prevent backward compatibilities issues with the customCompute() method
# being called at the same time as the compute() method. Only compute()
# should be called via network.run(). This flag will be removed once we
# get to cleaning up the clamodel.py file.
self._computeFlag = False
示例5: __setstate__
# 需要导入模块: from nupic.support.configuration import Configuration [as 别名]
# 或者: from nupic.support.configuration.Configuration import get [as 别名]
def __setstate__(self, state):
version = 1
if "_version" in state:
version = state["_version"]
# Migrate from version 1 to version 2
if version == 1:
self._vectorType = str(Configuration.get(
'nupic.model.temporalAnomaly.anomaly_vector'))
self._autoDetectWaitRecords = state['_classificationDelay']
elif version == 2:
self._autoDetectWaitRecords = state['_classificationDelay']
elif version == 3:
pass
else:
raise Exception("Error while deserializing %s: Invalid version %s"
%(self.__class__, version))
if '_autoDetectThreshold' not in state:
self._autoDetectThreshold = 1.1
for attr, value in state.iteritems():
setattr(self, attr, value)
self._version = CLAModelClassifierHelper.__VERSION__
示例6: __init__
# 需要导入模块: from nupic.support.configuration import Configuration [as 别名]
# 或者: from nupic.support.configuration.Configuration import get [as 别名]
def __init__(self, steps="1", alpha=0.001, verbosity=0, implementation=None, maxCategoryCount=None):
# Set default implementation
if implementation is None:
implementation = Configuration.get("nupic.opf.claClassifier.implementation")
# Convert the steps designation to a list
self.classifierImp = implementation
self.steps = steps
self.stepsList = eval("[%s]" % (steps))
self.alpha = alpha
self.verbosity = verbosity
# Initialize internal structures
self._claClassifier = CLAClassifierFactory.create(
steps=self.stepsList, alpha=self.alpha, verbosity=self.verbosity, implementation=implementation
)
self.learningMode = True
self.inferenceMode = False
self.maxCategoryCount = maxCategoryCount
self.recordNum = 0
self._initEphemerals()
# Flag to know if the compute() function is ever called. This is to
# prevent backward compatibilities issues with the customCompute() method
# being called at the same time as the compute() method. Only compute()
# should be called via network.run(). This flag will be removed once we
# get to cleaning up the clamodel.py file.
self._computeFlag = False
示例7: dbValidator
# 需要导入模块: from nupic.support.configuration import Configuration [as 别名]
# 或者: from nupic.support.configuration.Configuration import get [as 别名]
def dbValidator():
"""
Let the user know what NuPIC config file is being used
and whether or not they have mysql set up correctly for
swarming.
"""
fileused = getFileUsed()
# Get the values we need from NuPIC's configuration
host = Configuration.get("nupic.cluster.database.host")
port = int(Configuration.get("nupic.cluster.database.port"))
user = Configuration.get("nupic.cluster.database.user")
passwd = "*" * len(Configuration.get("nupic.cluster.database.passwd"))
print "This script will validate that your MySQL is setup correctly for "
print "NuPIC. MySQL is required for NuPIC swarming. The settings are"
print "defined in a configuration file found in "
print "$NUPIC/src/nupic/support/nupic-default.xml Out of the box those "
print "settings contain MySQL's default access credentials."
print
print "The nupic-default.xml can be duplicated to define user specific "
print "changes calling the copied file "
print "$NUPIC/src/nupic/support/nupic-site.xml Refer to the "
print "nupic-default.xml for additional instructions."
print
print "Defaults: localhost, 3306, root, no password"
print
print "Retrieved the following NuPIC configuration using: ", fileused
print " host : ", host
print " port : ", port
print " user : ", user
print " passwd : ", passwd
if testDbConnection(host, port, user, passwd):
print "Connection successful!!"
else:
print ("Couldn't connect to the database or you don't have the "
"permissions required to create databases and tables. "
"Please ensure you have MySQL\n installed, running, "
"accessible using the NuPIC configuration settings, "
"and the user specified has permission to create both "
"databases and tables.")
示例8: create
# 需要导入模块: from nupic.support.configuration import Configuration [as 别名]
# 或者: from nupic.support.configuration.Configuration import get [as 别名]
def create(*args, **kwargs):
impl = kwargs.pop("implementation", None)
if impl is None:
impl = Configuration.get("nupic.opf.claClassifier.implementation")
if impl == "py":
return SequenceClassifier(*args, **kwargs)
elif impl == "cpp":
raise ValueError("cpp version not yet implemented")
else:
raise ValueError("Invalid classifier implementation (%r). Value must be " '"py" or "cpp".' % impl)
示例9: create
# 需要导入模块: from nupic.support.configuration import Configuration [as 别名]
# 或者: from nupic.support.configuration.Configuration import get [as 别名]
def create(*args, **kwargs):
impl = kwargs.pop('implementation', None)
if impl is None:
impl = Configuration.get('nupic.opf.claClassifier.implementation')
if impl == 'py':
return SequenceClassifier(*args, **kwargs)
elif impl == 'cpp':
raise ValueError('cpp version not yet implemented')
else:
raise ValueError('Invalid classifier implementation (%r). Value must be '
'"py" or "cpp".' % impl)
示例10: __init__
# 需要导入模块: from nupic.support.configuration import Configuration [as 别名]
# 或者: from nupic.support.configuration.Configuration import get [as 别名]
def __init__(self, min, max, stepSize=None, inertia=None, cogRate=None,
socRate=None):
"""Construct a variable that permutes over floating point values using
the Particle Swarm Optimization (PSO) algorithm. See descriptions of
PSO (i.e. http://en.wikipedia.org/wiki/Particle_swarm_optimization)
for references to the inertia, cogRate, and socRate parameters.
Parameters:
-----------------------------------------------------------------------
min: min allowed value of position
max: max allowed value of position
stepSize: if not None, the position must be at min + N * stepSize,
where N is an integer
inertia: The inertia for the particle.
cogRate: This parameter controls how much the particle is affected
by its distance from it's local best position
socRate: This parameter controls how much the particle is affected
by its distance from the global best position
"""
super(PermuteFloat, self).__init__()
self.min = min
self.max = max
self.stepSize = stepSize
# The particle's initial position and velocity.
self._position = (self.max + self.min) / 2.0
self._velocity = (self.max - self.min) / 5.0
# The inertia, cognitive, and social components of the particle
self._inertia = (float(Configuration.get("nupic.hypersearch.inertia"))
if inertia is None else inertia)
self._cogRate = (float(Configuration.get("nupic.hypersearch.cogRate"))
if cogRate is None else cogRate)
self._socRate = (float(Configuration.get("nupic.hypersearch.socRate"))
if socRate is None else socRate)
# The particle's local best position and the best global position.
self._bestPosition = self.getPosition()
self._bestResult = None
示例11: create
# 需要导入模块: from nupic.support.configuration import Configuration [as 别名]
# 或者: from nupic.support.configuration.Configuration import get [as 别名]
def create(*args, **kwargs):
impl = kwargs.pop('implementation', None)
if impl is None:
impl = Configuration.get('nupic.opf.claClassifier.implementation')
if impl == 'py':
return CLAClassifier(*args, **kwargs)
elif impl == 'cpp':
return FastCLAClassifier(*args, **kwargs)
elif impl == 'diff':
return CLAClassifierDiff(*args, **kwargs)
else:
raise ValueError('Invalid classifier implementation (%r). Value must be '
'"py" or "cpp".' % impl)
示例12: create
# 需要导入模块: from nupic.support.configuration import Configuration [as 别名]
# 或者: from nupic.support.configuration.Configuration import get [as 别名]
def create(*args, **kwargs):
"""
Create a SDR classifier factory.
The implementation of the SDR Classifier can be specified with
the "implementation" keyword argument.
The SDRClassifierFactory uses the implementation as specified in
src/nupic/support/nupic-default.xml
"""
impl = kwargs.pop("implementation", None)
if impl is None:
impl = Configuration.get("nupic.opf.sdrClassifier.implementation")
if impl == "py":
return SDRClassifier(*args, **kwargs)
else:
raise ValueError("Invalid classifier implementation (%r). Value must be " '"py".' % impl)
示例13: create
# 需要导入模块: from nupic.support.configuration import Configuration [as 别名]
# 或者: from nupic.support.configuration.Configuration import get [as 别名]
def create(*args, **kwargs):
"""
Create a SDR classifier factory.
The implementation of the SDR Classifier can be specified with
the "implementation" keyword argument.
The SDRClassifierFactory uses the implementation as specified in
`Default NuPIC Configuration <default-config.html>`_.
"""
impl = kwargs.pop('implementation', None)
if impl is None:
impl = Configuration.get('nupic.opf.sdrClassifier.implementation')
if impl == 'py':
return SDRClassifier(*args, **kwargs)
elif impl == 'cpp':
return FastSDRClassifier(*args, **kwargs)
else:
raise ValueError('Invalid classifier implementation (%r). Value must be '
'"py" or "cpp".' % impl)
示例14: run
# 需要导入模块: from nupic.support.configuration import Configuration [as 别名]
# 或者: from nupic.support.configuration.Configuration import get [as 别名]
def run(self):
""" Run this worker.
Parameters:
----------------------------------------------------------------------
retval: jobID of the job we ran. This is used by unit test code
when calling this working using the --params command
line option (which tells this worker to insert the job
itself).
"""
# Easier access to options
options = self._options
# ---------------------------------------------------------------------
# Connect to the jobs database
self.logger.info("Connecting to the jobs database")
cjDAO = ClientJobsDAO.get()
# Get our worker ID
self._workerID = cjDAO.getConnectionID()
if options.clearModels:
cjDAO.modelsClearAll()
# -------------------------------------------------------------------------
# if params were specified on the command line, insert a new job using
# them.
if options.params is not None:
options.jobID = cjDAO.jobInsert(
client="hwTest",
cmdLine="echo 'test mode'",
params=options.params,
alreadyRunning=True,
minimumWorkers=1,
maximumWorkers=1,
jobType=cjDAO.JOB_TYPE_HS,
)
if options.workerID is not None:
wID = options.workerID
else:
wID = self._workerID
buildID = Configuration.get("nupic.software.buildNumber", "N/A")
logPrefix = "<BUILDID=%s, WORKER=HW, WRKID=%s, JOBID=%s> " % (buildID, wID, options.jobID)
ExtendedLogger.setLogPrefix(logPrefix)
# ---------------------------------------------------------------------
# Get the search parameters
# If asked to reset the job status, do that now
if options.resetJobStatus:
cjDAO.jobSetFields(
options.jobID,
fields={
"workerCompletionReason": ClientJobsDAO.CMPL_REASON_SUCCESS,
"cancel": False,
#'engWorkerState': None
},
useConnectionID=False,
ignoreUnchanged=True,
)
jobInfo = cjDAO.jobInfo(options.jobID)
self.logger.info("Job info retrieved: %s" % (str(clippedObj(jobInfo))))
# ---------------------------------------------------------------------
# Instantiate the Hypersearch object, which will handle the logic of
# which models to create when we need more to evaluate.
jobParams = json.loads(jobInfo.params)
# Validate job params
jsonSchemaPath = os.path.join(os.path.dirname(__file__), "jsonschema", "jobParamsSchema.json")
validate(jobParams, schemaPath=jsonSchemaPath)
hsVersion = jobParams.get("hsVersion", None)
if hsVersion == "v2":
self._hs = HypersearchV2(
searchParams=jobParams,
workerID=self._workerID,
cjDAO=cjDAO,
jobID=options.jobID,
logLevel=options.logLevel,
)
else:
raise RuntimeError("Invalid Hypersearch implementation (%s) specified" % (hsVersion))
# =====================================================================
# The main loop.
try:
exit = False
numModelsTotal = 0
print >>sys.stderr, "reporter:status:Evaluating first model..."
while not exit:
# ------------------------------------------------------------------
# Choose a model to evaluate
batchSize = 10 # How many to try at a time.
modelIDToRun = None
while modelIDToRun is None:
if options.modelID is None:
# -----------------------------------------------------------------
#.........这里部分代码省略.........
示例15: main
# 需要导入模块: from nupic.support.configuration import Configuration [as 别名]
# 或者: from nupic.support.configuration.Configuration import get [as 别名]
jobID = None
completionReason = ClientJobsDAO.CMPL_REASON_SUCCESS
completionMsg = "Success"
try:
jobID = hst.run()
except Exception, e:
jobID = hst._options.jobID
completionReason = ClientJobsDAO.CMPL_REASON_ERROR
completionMsg = "ERROR: %s" % (e,)
raise
finally:
if jobID is not None:
cjDAO = ClientJobsDAO.get()
cjDAO.jobSetCompleted(jobID=jobID, completionReason=completionReason, completionMsg=completionMsg)
return jobID
if __name__ == "__main__":
logging.setLoggerClass(ExtendedLogger)
buildID = Configuration.get("nupic.software.buildNumber", "N/A")
logPrefix = "<BUILDID=%s, WORKER=HS, WRKID=N/A, JOBID=N/A> " % buildID
ExtendedLogger.setLogPrefix(logPrefix)
try:
main(sys.argv)
except:
logging.exception("HypersearchWorker is exiting with unhandled exception; " "argv=%r", sys.argv)
raise