本文整理汇总了Python中nupic.research.connections.Connections.cellForSegment方法的典型用法代码示例。如果您正苦于以下问题:Python Connections.cellForSegment方法的具体用法?Python Connections.cellForSegment怎么用?Python Connections.cellForSegment使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nupic.research.connections.Connections
的用法示例。
在下文中一共展示了Connections.cellForSegment方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: TemporalMemory
# 需要导入模块: from nupic.research.connections import Connections [as 别名]
# 或者: from nupic.research.connections.Connections import cellForSegment [as 别名]
#.........这里部分代码省略.........
prevActiveCells,
winnerCells,
prevWinnerCells,
predictedInactiveCells,
prevMatchingSegments):
"""
Phase 3: Perform learning by adapting segments.
Pseudocode:
- (learning) for each prev active or learning segment
- if learning segment or from winner cell
- strengthen active synapses
- weaken inactive synapses
- if learning segment
- add some synapses to the segment
- subsample from prev winner cells
- if predictedSegmentDecrement > 0
- for each previously matching segment
- if cell is a predicted inactive cell
- weaken active synapses but don't touch inactive synapses
@param prevActiveSegments (set) Indices of active segments in `t-1`
@param learningSegments (set) Indices of learning segments in `t`
@param prevActiveCells (set) Indices of active cells in `t-1`
@param winnerCells (set) Indices of winner cells in `t`
@param prevWinnerCells (set) Indices of winner cells in `t-1`
@param predictedInactiveCells (set) Indices of predicted inactive cells
@param prevMatchingSegments (set) Indices of segments with
"""
for segment in prevActiveSegments | learningSegments:
isLearningSegment = segment in learningSegments
isFromWinnerCell = self.connections.cellForSegment(segment) in winnerCells
activeSynapses = self.activeSynapsesForSegment(segment, prevActiveCells)
if isLearningSegment or isFromWinnerCell:
self.adaptSegment(segment,
activeSynapses,
self.permanenceIncrement,
self.permanenceDecrement)
if isLearningSegment:
n = self.maxNewSynapseCount - len(activeSynapses)
for presynapticCell in self.pickCellsToLearnOn(n,
segment,
prevWinnerCells):
self.connections.createSynapse(segment,
presynapticCell,
self.initialPermanence)
if self.predictedSegmentDecrement > 0:
for segment in prevMatchingSegments:
isPredictedInactiveCell = (self.connections.cellForSegment(segment) in
predictedInactiveCells)
activeSynapses = self.activeSynapsesForSegment(segment, prevActiveCells)
if isPredictedInactiveCell:
self.adaptSegment(segment,
activeSynapses,
-self.predictedSegmentDecrement,
0.0)
示例2: TemporalMemory
# 需要导入模块: from nupic.research.connections import Connections [as 别名]
# 或者: from nupic.research.connections.Connections import cellForSegment [as 别名]
#.........这里部分代码省略.........
@staticmethod
def activatePredictedColumn(connections, excitedColumn, learn,
permanenceDecrement, permanenceIncrement,
prevActiveCells):
""" Determines which cells in a predicted column should be added to
winner cells list and calls adaptSegment on the segments that correctly
predicted this column.
@param connections (Object) Connections instance for the tm
@param excitedColumn (dict) Dict generated by excitedColumnsGenerator
@param learn (bool) Determines if permanences are adjusted
@permanenceDecrement (float) Amount by which permanences of synapses are
decremented during learning.
@permanenceIncrement (float) Amount by which permanences of synapses are
incremented during learning.
@param prevActiveCells (list) Active cells in `t-1`
@return cellsToAdd (list) A list of predicted cells that will be added to
active cells and winner cells.
Pseudocode:
for each cell in the column that has an active distal dendrite segment
mark the cell as active
mark the cell as a winner cell
(learning) for each active distal dendrite segment
strengthen active synapses
weaken inactive synapses
"""
cellsToAdd = []
cell = None
for active in excitedColumn["activeSegments"]:
newCell = not cell == connections.cellForSegment(active)
if newCell:
cell = connections.cellForSegment(active)
cellsToAdd.append(cell)
if learn:
TemporalMemory.adaptSegment(connections, prevActiveCells,
permanenceIncrement, permanenceDecrement,
active)
return cellsToAdd
@staticmethod
def burstColumn(cellsPerColumn, connections, excitedColumn,
learn, initialPermanence, maxNewSynapseCount,
permanenceDecrement, permanenceIncrement,
prevActiveCells, prevWinnerCells, random):
""" Activates all of the cells in an unpredicted active column,
chooses a winner cell, and, if learning is turned on, either adapts or
creates a segment. growSynapses is invoked on this segment.
@param cellsPerColumn (int) Number of cells per column
@param connections (Object) Connections instance for the tm
@param excitedColumn (dict) Excited Column instance from
excitedColumnsGenerator
@param learn (bool) Whether or not learning is enabled
@param initialPermanence (float) Initial permanence of a new synapse.
@param maxNewSynapseCount (int) The maximum number of synapses added to
a segment during learning
@param permanenceDecrement (float) Amount by which permanences of synapses
are decremented during learning
@param permanenceIncrement (float) Amount by which permanences of synapses