当前位置: 首页>>代码示例>>Python>>正文


Python ScalarEncoder.getBucketValues方法代码示例

本文整理汇总了Python中nupic.encoders.scalar.ScalarEncoder.getBucketValues方法的典型用法代码示例。如果您正苦于以下问题:Python ScalarEncoder.getBucketValues方法的具体用法?Python ScalarEncoder.getBucketValues怎么用?Python ScalarEncoder.getBucketValues使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nupic.encoders.scalar.ScalarEncoder的用法示例。


在下文中一共展示了ScalarEncoder.getBucketValues方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: CategoryEncoder

# 需要导入模块: from nupic.encoders.scalar import ScalarEncoder [as 别名]
# 或者: from nupic.encoders.scalar.ScalarEncoder import getBucketValues [as 别名]

#.........这里部分代码省略.........
        if len(desc) > 0:
          desc += ", "
        desc += self.indexToCategory[minV]
        minV += 1

    # Return result
    if parentFieldName != '':
      fieldName = "%s.%s" % (parentFieldName, self.name)
    else:
      fieldName = self.name
    return ({fieldName: (outRanges, desc)}, [fieldName])


  def closenessScores(self, expValues, actValues, fractional=True,):
    """ See the function description in base.py

    kwargs will have the keyword "fractional", which is ignored by this encoder
    """

    expValue = expValues[0]
    actValue = actValues[0]

    if expValue == actValue:
      closeness = 1.0
    else:
      closeness = 0.0

    if not fractional:
      closeness = 1.0 - closeness

    return numpy.array([closeness])


  def getBucketValues(self):
    """ See the function description in base.py """

    if self._bucketValues is None:
      numBuckets = len(self.encoder.getBucketValues())
      self._bucketValues = []
      for bucketIndex in range(numBuckets):
        self._bucketValues.append(self.getBucketInfo([bucketIndex])[0].value)

    return self._bucketValues


  def getBucketInfo(self, buckets):
    """ See the function description in base.py
    """

    # For the category encoder, the bucket index is the category index
    bucketInfo = self.encoder.getBucketInfo(buckets)[0]

    categoryIndex = int(round(bucketInfo.value))
    category = self.indexToCategory[categoryIndex]

    return [EncoderResult(value=category, scalar=categoryIndex,
                         encoding=bucketInfo.encoding)]


  def topDownCompute(self, encoded):
    """ See the function description in base.py
    """

    encoderResult = self.encoder.topDownCompute(encoded)[0]
    value = encoderResult.value
    categoryIndex = int(round(value))
开发者ID:alfonsokim,项目名称:nupic,代码行数:70,代码来源:category.py

示例2: initializeLSTMnet

# 需要导入模块: from nupic.encoders.scalar import ScalarEncoder [as 别名]
# 或者: from nupic.encoders.scalar.ScalarEncoder import getBucketValues [as 别名]
  net = initializeLSTMnet(nDimInput=len(ds.getSample()[0]), nDimOutput=len(ds.getSample()[1]), nLSTMcells=20)

  trainer = RPropMinusTrainer(net, dataset=ds, verbose=True)
  error = []
  for rpt in xrange(rptNum):
    err = trainer.train()
    error.append(err)

  print "test LSTM"
  net.reset()

  targetInput = np.zeros((len(sequence),))
  trueData = np.zeros((len(sequence),))
  predictedInput = np.zeros((len(sequence),))

  bucketValues = encoderOutput.getBucketValues()

  if encoderOutput is not None:
    predictedDistribution = np.zeros((len(sequence), encoderOutput.n))
    targetDistribution = np.zeros((len(sequence), encoderOutput.n))

  for i in xrange(len(sequence)-predictionStep):
    sample = getSingleSample(i, sequence, useTimeOfDay, useDayOfWeek)
    netActivation = net.activate(sample)

    if encoderOutput is None:
      predictedInput[i] = netActivation
    else:
      predictedInput[i] = bucketValues[np.where(netActivation == max(netActivation))[0][0]]
      predictedDistribution[i, :] = netActivation/sum(netActivation)
      targetDistribution[i, :] = encoderOutput.encode(sequence['data'][i+predictionStep])
开发者ID:Starcounter-Jack,项目名称:nupic.research,代码行数:33,代码来源:run_lstm_scalarEncoder.py

示例3: CategoryEncoder

# 需要导入模块: from nupic.encoders.scalar import ScalarEncoder [as 别名]
# 或者: from nupic.encoders.scalar.ScalarEncoder import getBucketValues [as 别名]

#.........这里部分代码省略.........
    """

    # Return result
    if parentFieldName != '':
      fieldName = "%s.%s" % (parentFieldName, self.name)
    else:
      fieldName = self.name
    return ({fieldName: (outRanges, desc)}, [fieldName])


  ############################################################################
  def closenessScores(self, expValues, actValues, fractional=True,):
    """ See the function description in base.py

    kwargs will have the keyword "fractional", which is ignored by this encoder
    """

    expValue = expValues[0]
    actValue = actValues[0]

    if expValue == actValue:
      closeness = 1.0
    else:
      closeness = 0.0

    if not fractional:
      closeness = 1.0 - closeness

    return numpy.array([closeness])



  ############################################################################
  def getBucketValues(self):
    """ See the function description in base.py """

    if self._bucketValues is None:
      numBuckets = len(self.encoder.getBucketValues())
      self._bucketValues = []
      for bucketIndex in range(numBuckets):
        self._bucketValues.append(self.getBucketInfo([bucketIndex])[0].value)     # to_note: list of category corresponding to bucket indices
                                                                                  # each bucket is a number that is spaced (radius/w) each other
    return self._bucketValues

  ############################################################################
  def getBucketInfo(self, buckets):
    """ See the function description in base.py
    """

    # For the category encoder, the bucket index is the category index
    bucketInfo = self.encoder.getBucketInfo(buckets)[0]

    categoryIndex = int(round(bucketInfo.value))
    category = self.indexToCategory[categoryIndex]              # to_note: map the bucket index to category

    return [EncoderResult(value=category, scalar=categoryIndex,
                         encoding=bucketInfo.encoding)]



  ############################################################################
  def topDownCompute(self, encoded):
    """ See the function description in base.py
    """

    encoderResult = self.encoder.topDownCompute(encoded)[0]       # to_note: return EncoderResult, which includes the value (depend on ScalarEncoder)
开发者ID:trung-duc,项目名称:mac-nupic,代码行数:70,代码来源:category.py

示例4: LogEncoder

# 需要导入模块: from nupic.encoders.scalar import ScalarEncoder [as 别名]
# 或者: from nupic.encoders.scalar.ScalarEncoder import getBucketValues [as 别名]

#.........这里部分代码省略.........
        # Get the scalar values from the underlying scalar encoder
        (fieldsDict, fieldNames) = self.encoder.decode(encoded)
        if len(fieldsDict) == 0:
            return (fieldsDict, fieldNames)

        # Expect only 1 field
        assert len(fieldsDict) == 1

        # Convert each range into normal space
        (inRanges, inDesc) = fieldsDict.values()[0]
        outRanges = []
        for (minV, maxV) in inRanges:
            outRanges.append((math.pow(10, minV), math.pow(10, maxV)))

        # Generate a text description of the ranges
        desc = ""
        numRanges = len(outRanges)
        for i in xrange(numRanges):
            if outRanges[i][0] != outRanges[i][1]:
                desc += "%.2f-%.2f" % (outRanges[i][0], outRanges[i][1])
            else:
                desc += "%.2f" % (outRanges[i][0])
            if i < numRanges - 1:
                desc += ", "

        # Return result
        if parentFieldName != "":
            fieldName = "%s.%s" % (parentFieldName, self.name)
        else:
            fieldName = self.name
        return ({fieldName: (outRanges, desc)}, [fieldName])

    ############################################################################
    def getBucketValues(self):
        """
    See the function description in base.py
    """

        # Need to re-create?
        if self._bucketValues is None:
            scaledValues = self.encoder.getBucketValues()
            self._bucketValues = []
            for scaledValue in scaledValues:
                value = math.pow(10, scaledValue)
                self._bucketValues.append(value)

        return self._bucketValues

    ############################################################################
    def getBucketInfo(self, buckets):
        """
    See the function description in base.py
    """

        scaledResult = self.encoder.getBucketInfo(buckets)[0]
        scaledValue = scaledResult.value
        value = math.pow(10, scaledValue)

        return [EncoderResult(value=value, scalar=value, encoding=scaledResult.encoding)]

    ############################################################################
    def topDownCompute(self, encoded):
        """
    See the function description in base.py
    """
开发者ID:Gnomonol,项目名称:nupic,代码行数:69,代码来源:logenc.py

示例5: LogEncoder

# 需要导入模块: from nupic.encoders.scalar import ScalarEncoder [as 别名]
# 或者: from nupic.encoders.scalar.ScalarEncoder import getBucketValues [as 别名]

#.........这里部分代码省略.........
    (fieldsDict, fieldNames) = self.encoder.decode(encoded)
    if len(fieldsDict) == 0:
      return (fieldsDict, fieldNames)

    # Expect only 1 field
    assert(len(fieldsDict) == 1)

    # Convert each range into normal space
    (inRanges, inDesc) = fieldsDict.values()[0]
    outRanges = []
    for (minV, maxV) in inRanges:
      outRanges.append((math.pow(10, minV),
                        math.pow(10, maxV)))

    # Generate a text description of the ranges
    desc = ""
    numRanges = len(outRanges)
    for i in xrange(numRanges):
      if outRanges[i][0] != outRanges[i][1]:
        desc += "%.2f-%.2f" % (outRanges[i][0], outRanges[i][1])
      else:
        desc += "%.2f" % (outRanges[i][0])
      if i < numRanges-1:
        desc += ", "

    # Return result
    if parentFieldName != '':
      fieldName = "%s.%s" % (parentFieldName, self.name)
    else:
      fieldName = self.name
    return ({fieldName: (outRanges, desc)}, [fieldName])


  def getBucketValues(self):
    """
    See the function description in base.py
    """

    # Need to re-create?
    if self._bucketValues is None:
      scaledValues = self.encoder.getBucketValues()
      self._bucketValues = []
      for scaledValue in scaledValues:
        value = math.pow(10, scaledValue)
        self._bucketValues.append(value)

    return self._bucketValues


  def getBucketInfo(self, buckets):
    """
    See the function description in base.py
    """

    scaledResult = self.encoder.getBucketInfo(buckets)[0]
    scaledValue = scaledResult.value
    value = math.pow(10, scaledValue)

    return [EncoderResult(value=value, scalar=value,
                         encoding = scaledResult.encoding)]


  def topDownCompute(self, encoded):
    """
    See the function description in base.py
    """
开发者ID:mrcslws,项目名称:nupic,代码行数:70,代码来源:logarithm.py


注:本文中的nupic.encoders.scalar.ScalarEncoder.getBucketValues方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。