本文整理汇总了Python中nupic.encoders.random_distributed_scalar.RandomDistributedScalarEncoder.getBucketIndices方法的典型用法代码示例。如果您正苦于以下问题:Python RandomDistributedScalarEncoder.getBucketIndices方法的具体用法?Python RandomDistributedScalarEncoder.getBucketIndices怎么用?Python RandomDistributedScalarEncoder.getBucketIndices使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nupic.encoders.random_distributed_scalar.RandomDistributedScalarEncoder
的用法示例。
在下文中一共展示了RandomDistributedScalarEncoder.getBucketIndices方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testMapBucketIndexToNonZeroBits
# 需要导入模块: from nupic.encoders.random_distributed_scalar import RandomDistributedScalarEncoder [as 别名]
# 或者: from nupic.encoders.random_distributed_scalar.RandomDistributedScalarEncoder import getBucketIndices [as 别名]
def testMapBucketIndexToNonZeroBits(self):
"""
Test that mapBucketIndexToNonZeroBits works and that max buckets and
clipping are handled properly.
"""
enc = RandomDistributedScalarEncoder(resolution=1.0, w=11, n=150)
# Set a low number of max buckets
enc._initializeBucketMap(10, None)
enc.encode(0.0)
enc.encode(-7.0)
enc.encode(7.0)
self.assertEqual(len(enc.bucketMap), enc._maxBuckets,
"_maxBuckets exceeded")
self.assertTrue(
(enc.mapBucketIndexToNonZeroBits(-1) == enc.bucketMap[0]).all(),
"mapBucketIndexToNonZeroBits did not handle negative index")
self.assertTrue(
(enc.mapBucketIndexToNonZeroBits(1000) == enc.bucketMap[9]).all(),
"mapBucketIndexToNonZeroBits did not handle negative index")
e23 = enc.encode(23.0)
e6 = enc.encode(6)
self.assertEqual((e23 == e6).sum(), enc.getWidth(),
"Values not clipped correctly during encoding")
e_8 = enc.encode(-8)
e_7 = enc.encode(-7)
self.assertEqual((e_8 == e_7).sum(), enc.getWidth(),
"Values not clipped correctly during encoding")
self.assertEqual(enc.getBucketIndices(-8)[0], 0,
"getBucketIndices returned negative bucket index")
self.assertEqual(enc.getBucketIndices(23)[0], enc._maxBuckets-1,
"getBucketIndices returned bucket index that is too large")
示例2: testVerbosity
# 需要导入模块: from nupic.encoders.random_distributed_scalar import RandomDistributedScalarEncoder [as 别名]
# 或者: from nupic.encoders.random_distributed_scalar.RandomDistributedScalarEncoder import getBucketIndices [as 别名]
def testVerbosity(self):
"""
Test that nothing is printed out when verbosity=0
"""
_stdout = sys.stdout
sys.stdout = _stringio = StringIO()
encoder = RandomDistributedScalarEncoder(name="mv", resolution=1.0, verbosity=0)
output = numpy.zeros(encoder.getWidth(), dtype=defaultDtype)
encoder.encodeIntoArray(23.0, output)
encoder.getBucketIndices(23.0)
sys.stdout = _stdout
self.assertEqual(len(_stringio.getvalue()), 0, "zero verbosity doesn't lead to zero output")
示例3: testEncoding
# 需要导入模块: from nupic.encoders.random_distributed_scalar import RandomDistributedScalarEncoder [as 别名]
# 或者: from nupic.encoders.random_distributed_scalar.RandomDistributedScalarEncoder import getBucketIndices [as 别名]
def testEncoding(self):
"""
Test basic encoding functionality. Create encodings without crashing and
check they contain the correct number of on and off bits. Check some
encodings for expected overlap. Test that encodings for old values don't
change once we generate new buckets.
"""
# Initialize with non-default parameters and encode with a number close to
# the offset
enc = RandomDistributedScalarEncoder(name='enc', resolution=1.0, w=23,
n=500, offset = 0.0)
e0 = enc.encode(-0.1)
self.assertEqual(e0.sum(), 23, "Number of on bits is incorrect")
self.assertEqual(e0.size, 500, "Width of the vector is incorrect")
self.assertEqual(enc.getBucketIndices(0.0)[0], enc._maxBuckets / 2,
"Offset doesn't correspond to middle bucket")
self.assertEqual(len(enc.bucketMap), 1, "Number of buckets is not 1")
# Encode with a number that is resolution away from offset. Now we should
# have two buckets and this encoding should be one bit away from e0
e1 = enc.encode(1.0)
self.assertEqual(len(enc.bucketMap), 2, "Number of buckets is not 2")
self.assertEqual(e1.sum(), 23, "Number of on bits is incorrect")
self.assertEqual(e1.size, 500, "Width of the vector is incorrect")
self.assertEqual(computeOverlap(e0, e1), 22,
"Overlap is not equal to w-1")
# Encode with a number that is resolution*w away from offset. Now we should
# have many buckets and this encoding should have very little overlap with
# e0
e25 = enc.encode(25.0)
self.assertGreater(len(enc.bucketMap), 23, "Number of buckets is not 2")
self.assertEqual(e25.sum(), 23, "Number of on bits is incorrect")
self.assertEqual(e25.size, 500, "Width of the vector is incorrect")
self.assertLess(computeOverlap(e0, e25), 4,
"Overlap is too high")
# Test encoding consistency. The encodings for previous numbers
# shouldn't change even though we have added additional buckets
self.assertEqual((e0 == enc.encode(-0.1)).sum(), 500,
"Encodings are not consistent - they have changed after new buckets "
"have been created")
self.assertEqual((e1 == enc.encode(1.0)).sum(), 500,
"Encodings are not consistent - they have changed after new buckets "
"have been created")
示例4: runHotgym
# 需要导入模块: from nupic.encoders.random_distributed_scalar import RandomDistributedScalarEncoder [as 别名]
# 或者: from nupic.encoders.random_distributed_scalar.RandomDistributedScalarEncoder import getBucketIndices [as 别名]
def runHotgym(numRecords):
with open(_PARAMS_PATH, "r") as f:
modelParams = yaml.safe_load(f)["modelParams"]
enParams = modelParams["sensorParams"]["encoders"]
spParams = modelParams["spParams"]
tmParams = modelParams["tmParams"]
timeOfDayEncoder = DateEncoder(
timeOfDay=enParams["timestamp_timeOfDay"]["timeOfDay"])
weekendEncoder = DateEncoder(
weekend=enParams["timestamp_weekend"]["weekend"])
scalarEncoder = RandomDistributedScalarEncoder(
enParams["consumption"]["resolution"])
encodingWidth = (timeOfDayEncoder.getWidth()
+ weekendEncoder.getWidth()
+ scalarEncoder.getWidth())
sp = SpatialPooler(
inputDimensions=(encodingWidth,),
columnDimensions=(spParams["columnCount"],),
potentialPct=spParams["potentialPct"],
potentialRadius=encodingWidth,
globalInhibition=spParams["globalInhibition"],
localAreaDensity=spParams["localAreaDensity"],
numActiveColumnsPerInhArea=spParams["numActiveColumnsPerInhArea"],
synPermInactiveDec=spParams["synPermInactiveDec"],
synPermActiveInc=spParams["synPermActiveInc"],
synPermConnected=spParams["synPermConnected"],
boostStrength=spParams["boostStrength"],
seed=spParams["seed"],
wrapAround=True
)
tm = TemporalMemory(
columnDimensions=(tmParams["columnCount"],),
cellsPerColumn=tmParams["cellsPerColumn"],
activationThreshold=tmParams["activationThreshold"],
initialPermanence=tmParams["initialPerm"],
connectedPermanence=spParams["synPermConnected"],
minThreshold=tmParams["minThreshold"],
maxNewSynapseCount=tmParams["newSynapseCount"],
permanenceIncrement=tmParams["permanenceInc"],
permanenceDecrement=tmParams["permanenceDec"],
predictedSegmentDecrement=0.0,
maxSegmentsPerCell=tmParams["maxSegmentsPerCell"],
maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"],
seed=tmParams["seed"]
)
classifier = SDRClassifierFactory.create()
results = []
with open(_INPUT_FILE_PATH, "r") as fin:
reader = csv.reader(fin)
headers = reader.next()
reader.next()
reader.next()
for count, record in enumerate(reader):
if count >= numRecords: break
# Convert data string into Python date object.
dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M")
# Convert data value string into float.
consumption = float(record[1])
# To encode, we need to provide zero-filled numpy arrays for the encoders
# to populate.
timeOfDayBits = numpy.zeros(timeOfDayEncoder.getWidth())
weekendBits = numpy.zeros(weekendEncoder.getWidth())
consumptionBits = numpy.zeros(scalarEncoder.getWidth())
# Now we call the encoders to create bit representations for each value.
timeOfDayEncoder.encodeIntoArray(dateString, timeOfDayBits)
weekendEncoder.encodeIntoArray(dateString, weekendBits)
scalarEncoder.encodeIntoArray(consumption, consumptionBits)
# Concatenate all these encodings into one large encoding for Spatial
# Pooling.
encoding = numpy.concatenate(
[timeOfDayBits, weekendBits, consumptionBits]
)
# Create an array to represent active columns, all initially zero. This
# will be populated by the compute method below. It must have the same
# dimensions as the Spatial Pooler.
activeColumns = numpy.zeros(spParams["columnCount"])
# Execute Spatial Pooling algorithm over input space.
sp.compute(encoding, True, activeColumns)
activeColumnIndices = numpy.nonzero(activeColumns)[0]
# Execute Temporal Memory algorithm over active mini-columns.
tm.compute(activeColumnIndices, learn=True)
activeCells = tm.getActiveCells()
# Get the bucket info for this input value for classification.
bucketIdx = scalarEncoder.getBucketIndices(consumption)[0]
#.........这里部分代码省略.........
示例5: runHotgym
# 需要导入模块: from nupic.encoders.random_distributed_scalar import RandomDistributedScalarEncoder [as 别名]
# 或者: from nupic.encoders.random_distributed_scalar.RandomDistributedScalarEncoder import getBucketIndices [as 别名]
#.........这里部分代码省略.........
# be considered neighbors when mapping columns to inputs.
wrapAround=False
)
tm = TemporalMemory(
# Must be the same dimensions as the SP
columnDimensions=(tmParams["columnCount"],),
# How many cells in each mini-column.
cellsPerColumn=tmParams["cellsPerColumn"],
# A segment is active if it has >= activationThreshold connected synapses
# that are active due to infActiveState
activationThreshold=tmParams["activationThreshold"],
initialPermanence=tmParams["initialPerm"],
# TODO: This comes from the SP params, is this normal
connectedPermanence=spParams["synPermConnected"],
# Minimum number of active synapses for a segment to be considered during
# search for the best-matching segments.
minThreshold=tmParams["minThreshold"],
# The max number of synapses added to a segment during learning
maxNewSynapseCount=tmParams["newSynapseCount"],
permanenceIncrement=tmParams["permanenceInc"],
permanenceDecrement=tmParams["permanenceDec"],
predictedSegmentDecrement=0.0,
maxSegmentsPerCell=tmParams["maxSegmentsPerCell"],
maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"],
seed=tmParams["seed"]
)
classifier = SDRClassifierFactory.create()
results = []
with open(_INPUT_FILE_PATH, "r") as fin:
reader = csv.reader(fin)
headers = reader.next()
reader.next()
reader.next()
for count, record in enumerate(reader):
if count >= numRecords: break
# Convert data string into Python date object.
dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M")
# Convert data value string into float.
consumption = float(record[1])
# To encode, we need to provide zero-filled numpy arrays for the encoders
# to populate.
timeOfDayBits = numpy.zeros(timeOfDayEncoder.getWidth())
weekendBits = numpy.zeros(weekendEncoder.getWidth())
consumptionBits = numpy.zeros(scalarEncoder.getWidth())
# Now we call the encoders create bit representations for each value.
timeOfDayEncoder.encodeIntoArray(dateString, timeOfDayBits)
weekendEncoder.encodeIntoArray(dateString, weekendBits)
scalarEncoder.encodeIntoArray(consumption, consumptionBits)
# Concatenate all these encodings into one large encoding for Spatial
# Pooling.
encoding = numpy.concatenate(
[timeOfDayBits, weekendBits, consumptionBits]
)
# Create an array to represent active columns, all initially zero. This
# will be populated by the compute method below. It must have the same
# dimensions as the Spatial Pooler.
activeColumns = numpy.zeros(spParams["columnCount"])
# Execute Spatial Pooling algorithm over input space.
sp.compute(encoding, True, activeColumns)
activeColumnIndices = numpy.nonzero(activeColumns)[0]
# Execute Temporal Memory algorithm over active mini-columns.
tm.compute(activeColumnIndices, learn=True)
activeCells = tm.getActiveCells()
# Get the bucket info for this input value for classification.
bucketIdx = scalarEncoder.getBucketIndices(consumption)[0]
# Run classifier to translate active cells back to scalar value.
classifierResult = classifier.compute(
recordNum=count,
patternNZ=activeCells,
classification={
"bucketIdx": bucketIdx,
"actValue": consumption
},
learn=True,
infer=True
)
# Print the best prediction for 1 step out.
oneStepConfidence, oneStep = sorted(
zip(classifierResult[1], classifierResult["actualValues"]),
reverse=True
)[0]
print("1-step: {:16} ({:4.4}%)".format(oneStep, oneStepConfidence * 100))
results.append([oneStep, oneStepConfidence * 100, None, None])
return results