当前位置: 首页>>代码示例>>Python>>正文


Python AnomalyLikelihood.anomalyProbability方法代码示例

本文整理汇总了Python中nupic.algorithms.anomaly_likelihood.AnomalyLikelihood.anomalyProbability方法的典型用法代码示例。如果您正苦于以下问题:Python AnomalyLikelihood.anomalyProbability方法的具体用法?Python AnomalyLikelihood.anomalyProbability怎么用?Python AnomalyLikelihood.anomalyProbability使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在nupic.algorithms.anomaly_likelihood.AnomalyLikelihood的用法示例。


在下文中一共展示了AnomalyLikelihood.anomalyProbability方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: runAvogadroAnomaly

# 需要导入模块: from nupic.algorithms.anomaly_likelihood import AnomalyLikelihood [as 别名]
# 或者: from nupic.algorithms.anomaly_likelihood.AnomalyLikelihood import anomalyProbability [as 别名]
def runAvogadroAnomaly(metric, options):
  """
  Create a new HTM Model, fetch the data from the local DB, process it in NuPIC,
  and save the results to a new CSV output file.

  :param metric: AvogadroAgent metric class
  :param options: CLI Options
  """
  model = createModel(metric)
  model.enableInference({"predictedField": metric.name})

  fetched = metric.fetch(prefix=options.prefix, start=None)

  resultFile = open(os.path.join(options.prefix, metric.name + "-result.csv"),
                    "wb")
  csvWriter = csv.writer(resultFile)
  csvWriter.writerow(["timestamp", metric.name, "raw_anomaly_score",
                      "anomaly_likelihood", "color"])

  headers = ("timestamp", metric.name)

  anomalyLikelihood = AnomalyLikelihood()

  for (ts, value) in fetched:
    try:
      value = float(value)
    except (ValueError, TypeError):
      continue

    if not math.isnan(value):
      modelInput = dict(zip(headers, (ts, value)))
      modelInput[metric.name] = float(value)
      modelInput["timestamp"] = datetime.datetime.fromtimestamp(
        float(modelInput["timestamp"]))
      result = model.run(modelInput)
      anomalyScore = result.inferences["anomalyScore"]

      likelihood = anomalyLikelihood.anomalyProbability(
        modelInput[metric.name], anomalyScore, modelInput["timestamp"])
      logLikelihood = anomalyLikelihood.computeLogLikelihood(likelihood)

      if logLikelihood > .5:
        color = "red"
      elif logLikelihood > .4 and logLikelihood <= .5:
        color = "yellow"
      else:
        color = "green"

      csvWriter.writerow([modelInput["timestamp"], float(value),
                          anomalyScore, logLikelihood, color])

  else:
    resultFile.flush()
开发者ID:AnthonyAaronHughWong,项目名称:nupic.rogue,代码行数:55,代码来源:nupic_forwarder.py

示例2: testLikelihoodValues

# 需要导入模块: from nupic.algorithms.anomaly_likelihood import AnomalyLikelihood [as 别名]
# 或者: from nupic.algorithms.anomaly_likelihood.AnomalyLikelihood import anomalyProbability [as 别名]
  def testLikelihoodValues(self):
    """ test to see if the region keeps track of state correctly and produces
        the same likelihoods as the AnomalyLikelihood module """
    anomalyLikelihoodRegion = AnomalyLikelihoodRegion()
    anomalyLikelihood = AnomalyLikelihood()

    inputs = AnomalyLikelihoodRegion.getSpec()['inputs']
    outputs = AnomalyLikelihoodRegion.getSpec()['outputs']
    with open (_INPUT_DATA_FILE) as f:
      reader = csv.reader(f)
      reader.next()
      for record in reader:
        consumption = float(record[1])
        anomalyScore = float(record[2])
        likelihood1 = anomalyLikelihood.anomalyProbability(
          consumption, anomalyScore)

        inputs['rawAnomalyScore'] = numpy.array([anomalyScore])
        inputs['metricValue'] = numpy.array([consumption])
        anomalyLikelihoodRegion.compute(inputs, outputs)
        likelihood2 = outputs['anomalyLikelihood'][0]

        self.assertEqual(likelihood1, likelihood2)
开发者ID:GYGit,项目名称:nupic,代码行数:25,代码来源:anomaly_likelihood_region_test.py

示例3: int

# 需要导入模块: from nupic.algorithms.anomaly_likelihood import AnomalyLikelihood [as 别名]
# 或者: from nupic.algorithms.anomaly_likelihood.AnomalyLikelihood import anomalyProbability [as 别名]
  try:
    event = (numpy.array([x, y]), int(10*float(earthquake.mag)))
    modelInput = {}
    modelInput["event"] = event
    modelInput["timestamp"] = (
      datetime.datetime.strptime(earthquake.time, "%Y-%m-%dT%H:%M:%S.%fZ"))

    result = model.run(modelInput)
    anomalyScore = result.inferences["anomalyScore"]
    scores.append(anomalyScore)
    likelihoodScores.append([modelInput["timestamp"],
                             modelInput["event"],
                             anomalyScore])

    likelihood = anomalyLikelihood.anomalyProbability(
      event[0] + numpy.array([event[1]]),
      anomalyScore,
      modelInput["timestamp"])

    data = {"lat": earthquake.latitude,
            "lng": earthquake.longitude,
            "score": anomalyScore,
            "mag": earthquake.mag,
            "mean": (numpy.mean(scores), WINDOWSIZE),
            "timestamp": earthquake.time,
            "likelihood": likelihood}

    r.publish("nupic", json.dumps(data))
    print data

  except ValueError:
    pass
开发者ID:oxtopus,项目名称:shakehack,代码行数:34,代码来源:run.py

示例4: Anomaly

# 需要导入模块: from nupic.algorithms.anomaly_likelihood import AnomalyLikelihood [as 别名]
# 或者: from nupic.algorithms.anomaly_likelihood.AnomalyLikelihood import anomalyProbability [as 别名]
class Anomaly(object):
  """basic class that computes anomaly

     Anomaly is used to detect strange patterns/behaviors (outliners) 
     by a trained CLA model. 
  """



  # anomaly modes supported
  MODE_PURE = "pure"
  MODE_LIKELIHOOD = "likelihood"
  MODE_WEIGHTED = "weighted"
  _supportedModes = [MODE_PURE, MODE_LIKELIHOOD, MODE_WEIGHTED]


  def __init__(self, slidingWindowSize = None, anomalyMode=MODE_PURE, 
               shiftPredicted=False):
    """
    @param (optional) slidingWindowSize -- enables moving average on final 
                      anomaly score; how many elements are summed up, 
                      sliding window size; int >= 0
    @param (optional) anomalyMode -- (string) how to compute anomaly;
                      possible values are: 
                         -- "pure" -- the default, how much anomal the value is; 
                                      float 0..1 where 1=totally unexpected
                         -- "likelihood" -- uses the anomaly_likelihood code; 
                                      models probability of receiving this 
                                      value and anomalyScore; used in Grok
                         -- "weighted" -- "pure" anomaly weighted by "likelihood" (anomaly * likelihood)
    @param shiftPredicted (optional) -- boolean [default=False]; 
                                      normally active vs predicted are compared
                          if shiftPredicted=True: predicted(T-1) vs active(T) 
                             are compared (eg from TP, CLAModel)
    """

    # using cumulative anomaly , sliding window
    if slidingWindowSize > 0:
      self._windowSize = slidingWindowSize
      #sliding window buffer
      self._buf = numpy.array([0] * self._windowSize, dtype=numpy.float)
      self._i = 0 # index pointer to actual position
    elif slidingWindowSize is not None:
      raise Exception("Anomaly: if you define slidingWindowSize, \
      it has to be an integer > 0; \
      slidingWindowSize="+str(slidingWindowSize))

    # mode
    self._mode = anomalyMode
    if self._mode == Anomaly.MODE_LIKELIHOOD:
      self._likelihood = AnomalyLikelihood() # probabilistic anomaly
    if not self._mode in Anomaly._supportedModes:
      raise ValueError('Invalid anomaly mode; only supported modes are: \
                       "Anomaly.MODE_PURE", "Anomaly.MODE_LIKELIHOOD", \
                       "Anomaly.MODE_WEIGHTED"; you used:' +self._mode)

    if shiftPredicted:
      self._prevPredictedColumns = numpy.array([])


  def computeAnomalyScore(self, activeColumns, predictedColumns, value=None, 
                          timestamp=None):
    """Compute the anomaly score as the percent of active columns not predicted
  
    @param activeColumns: array of active column indices
    @param predictedColumns: array of columns indices predicted in this step 
                             (used for anomaly in step T+1)
    @param value: (optional) input value, that is what activeColumns represent
                              (used in anomaly-likelihood)
    @param timestamp: (optional) date timestamp when the sample occured 
                              (used in anomaly-likelihood)
    @return the computed anomaly score; float 0..1
    """

    if hasattr(self, "_prevPredictedColumns"): # shiftPredicted==True
      prevPredictedColumns = self._prevPredictedColumns
      self._prevPredictedColumns = predictedColumns # to be used in step T+1
    else:
      prevPredictedColumns = predictedColumns

    # 1. here is the 'classic' anomaly score
    anomalyScore = computeRawAnomalyScore(activeColumns, prevPredictedColumns)

    # compute final anomaly based on selected mode
    if self._mode == Anomaly.MODE_PURE:
      score = anomalyScore
    elif self._mode == Anomaly.MODE_LIKELIHOOD:
      probability = self._likelihood.anomalyProbability(value, anomalyScore, timestamp)
      score = probability
    elif self._mode == Anomaly.MODE_WEIGHTED:
      probability = self._likelihood.anomalyProbability(value, anomalyScore, timestamp)
      score = anomalyScore * probability

    # last, do moving-average if windowSize is set
    if hasattr(self, "_windowSize"):
      score = self._movingAverage(score)

    return score


#.........这里部分代码省略.........
开发者ID:pjpan,项目名称:nupic,代码行数:103,代码来源:anomaly.py

示例5: _ModelRunner

# 需要导入模块: from nupic.algorithms.anomaly_likelihood import AnomalyLikelihood [as 别名]
# 或者: from nupic.algorithms.anomaly_likelihood.AnomalyLikelihood import anomalyProbability [as 别名]
class _ModelRunner(object):
  """ Use OPF Model to process metric data samples from stdin and and emit
  anomaly likelihood results to stdout
  """


  def __init__(self, inputFileObj, inputSpec, aggSpec, modelSpec):
    """
    :param inputFileObj: A file-like object that contains input metric data
    :param dict inputSpec: Input data specification per input_opt_schema.json
    :param dict aggSpec: Optional aggregation specification per
      agg_opt_schema.json or None if no aggregation is requested
    :param dict modelSpec: Model specification per model_opt_schema.json
    """
    self._inputSpec = inputSpec

    self._aggSpec = aggSpec

    self._modelSpec = modelSpec

    if "modelId" in modelSpec:
      self._modelId = modelSpec["modelId"]
    else:
      self._modelId = "Unknown"


    inputRecordSchema = (
      fieldmeta.FieldMetaInfo(modelSpec["timestampFieldName"],
                              fieldmeta.FieldMetaType.datetime,
                              fieldmeta.FieldMetaSpecial.timestamp),
      fieldmeta.FieldMetaInfo(modelSpec["valueFieldName"],
                              fieldmeta.FieldMetaType.float,
                              fieldmeta.FieldMetaSpecial.none),
    )

    self._aggregator = aggregator.Aggregator(
      aggregationInfo=dict(
        fields=([(modelSpec["valueFieldName"], aggSpec["func"])]
                if aggSpec is not None else []),
        seconds=aggSpec["windowSize"] if aggSpec is not None else 0
      ),
      inputFields=inputRecordSchema)

    self._modelRecordEncoder = record_stream.ModelRecordEncoder(
      fields=inputRecordSchema)

    self._model = self._createModel(modelSpec=modelSpec)

    self._anomalyLikelihood = AnomalyLikelihood()

    self._csvReader = self._createCsvReader(inputFileObj)


  @staticmethod
  def _createModel(modelSpec):
    """Instantiate and configure an OPF model

    :param dict modelSpec: Model specification per model_opt_schema.json

    :returns: OPF Model instance
    """

    model = ModelFactory.create(modelConfig=modelSpec["modelConfig"])
    model.enableLearning()
    model.enableInference(modelSpec["inferenceArgs"])

    return model


  @staticmethod
  def _createCsvReader(fileObj):
    # We'll be operating on csvs with arbitrarily long fields
    csv.field_size_limit(2**27)

    # Make sure readline() works on windows too
    os.linesep = "\n"

    return csv.reader(fileObj, dialect="excel")


  @classmethod
  def _emitOutputMessage(cls, dataRow, anomalyProbability):
    """Emit output message to stdout

    :param list dataRow: the two-tuple data row on which anomalyProbability was
      computed, whose first element is datetime timestamp and second element is
      the float scalar value
    :param float anomalyProbability: computed anomaly probability value
    """

    message = "%s\n" % (json.dumps([dataRow[0].isoformat(), dataRow[1], anomalyProbability]),)

    sys.stdout.write(message)
    sys.stdout.flush()


  def _computeAnomalyProbability(self, fields):
    """ Compute anomaly log likelihood score

    :param tuple fields: Two-tuple input metric data row
#.........这里部分代码省略.........
开发者ID:bnmgit,项目名称:numenta-apps,代码行数:103,代码来源:model_runner_2.py

示例6: _ModelRunner

# 需要导入模块: from nupic.algorithms.anomaly_likelihood import AnomalyLikelihood [as 别名]
# 或者: from nupic.algorithms.anomaly_likelihood.AnomalyLikelihood import anomalyProbability [as 别名]
class _ModelRunner(object):
  """ Use OPF Model to process metric data samples from stdin and and emit
  anomaly likelihood results to stdout
  """

  # Input column meta info compatible with parameters generated by
  # getScalarMetricWithTimeOfDayAnomalyParams
  _INPUT_RECORD_SCHEMA = (
    fieldmeta.FieldMetaInfo("c0", fieldmeta.FieldMetaType.datetime,
                            fieldmeta.FieldMetaSpecial.timestamp),
    fieldmeta.FieldMetaInfo("c1", fieldmeta.FieldMetaType.float,
                            fieldmeta.FieldMetaSpecial.none),
  )


  def __init__(self, modelId, stats):
    """
    :param str modelId: model identifier
    :param dict stats: Metric data stats per stats_schema.json in the
      unicorn_backend package.
    """
    self._modelId = modelId

    # NOTE: ModelRecordEncoder is implemented in the pull request
    # https://github.com/numenta/nupic/pull/2432 that is not yet in master.
    self._modelRecordEncoder = record_stream.ModelRecordEncoder(
      fields=self._INPUT_RECORD_SCHEMA)

    self._model = self._createModel(stats=stats)

    self._anomalyLikelihood = AnomalyLikelihood()


  @classmethod
  def _createModel(cls, stats):
    """Instantiate and configure an OPF model

    :param dict stats: Metric data stats per stats_schema.json in the
      unicorn_backend package.
    :returns: OPF Model instance
    """
    # Generate swarm params
    swarmParams = getScalarMetricWithTimeOfDayAnomalyParams(
      metricData=[0],
      minVal=stats["min"],
      maxVal=stats["max"],
      minResolution=stats.get("minResolution"))

    model = ModelFactory.create(modelConfig=swarmParams["modelConfig"])
    model.enableLearning()
    model.enableInference(swarmParams["inferenceArgs"])

    return model


  @classmethod
  def _readInputMessages(cls):
    """Create a generator that waits for and yields input messages from
    stdin

    yields two-tuple (<timestamp>, <scalar-value>), where <timestamp> is the
    `datetime.datetime` timestamp of the metric data sample and <scalar-value>
    is the floating point value of the metric data sample.
    """
    while True:
      message = sys.stdin.readline()

      if message:
        timestamp, scalarValue = json.loads(message)
        yield (datetime.utcfromtimestamp(timestamp), scalarValue)
      else:
        # Front End closed the pipe (or died)
        break


  @classmethod
  def _emitOutputMessage(cls, rowIndex, anomalyProbability):
    """Emit output message to stdout

    :param int rowIndex: 0-based index of corresponding input sample
    :param float anomalyProbability: computed anomaly probability value
    """
    message = "%s\n" % (json.dumps([rowIndex, anomalyProbability]),)

    sys.stdout.write(message)
    sys.stdout.flush()


  def _computeAnomalyProbability(self, inputRow):
    """ Compute anomaly log likelihood score

    :param tuple inputRow: Two-tuple input metric data row
      (<datetime-timestamp>, <float-scalar>)

    :returns: Log-scaled anomaly probability
    :rtype: float
    """
    # Generate raw anomaly score
    inputRecord = self._modelRecordEncoder.encode(inputRow)
    rawAnomalyScore = self._model.run(inputRecord).inferences["anomalyScore"]
#.........这里部分代码省略.........
开发者ID:darian19,项目名称:numenta-apps,代码行数:103,代码来源:model_runner.py

示例7: Monitor

# 需要导入模块: from nupic.algorithms.anomaly_likelihood import AnomalyLikelihood [as 别名]
# 或者: from nupic.algorithms.anomaly_likelihood.AnomalyLikelihood import anomalyProbability [as 别名]
class Monitor(object):
    """ A NuPIC model that saves results to Redis. """

    def __init__(self, config):

        # Instantiate NuPIC model
        model_params = base_model_params.MODEL_PARAMS

        # Set resolution
        model_params['modelParams']['sensorParams']['encoders']['value']['resolution'] = config['resolution']

        # Override other Nupic parameters:
        model_params['modelParams'] = update_dict(model_params['modelParams'], config['nupic_model_params'])

        # Create model and enable inference on it
        self.model = ModelFactory.create(model_params)
        self.model.enableInference({'predictedField': 'value'})

        # The shifter is used to bring the predictions to the actual time frame
        self.shifter = InferenceShifter()

        # The anomaly likelihood object
        self.anomalyLikelihood = AnomalyLikelihood()

        # Set stream source
        self.stream = config['stream']

        # Setup class variables
        self.db = redis.Redis('localhost')
        self.seconds_per_request = config['seconds_per_request']
        self.webhook = config['webhook']
        self.anomaly_threshold = config['anomaly_threshold']
        self.likelihood_threshold = config['likelihood_threshold']
        self.domain = config['domain']
        self.alert = False # Toogle when we get above threshold

        # Setup logging
        self.logger =  logger or logging.getLogger(__name__)
        handler = logging.handlers.RotatingFileHandler(os.environ['LOG_DIR']+"/monitor_%s.log" % self.stream.name,
                                                       maxBytes=1024*1024,
                                                       backupCount=4,
                                                      )

        handler.setFormatter(logging.Formatter('[%(levelname)s/%(processName)s][%(asctime)s] %(name)s %(message)s'))
        handler.setLevel(logging.INFO)
        self.logger.addHandler(handler)
        self.logger.setLevel(logging.INFO)

        self.logger.info("=== Settings ===")
        self.logger.info("Webhook: %s", self.webhook)
        self.logger.info("Domain: %s", self.domain)
        self.logger.info("Seconds per request: %d", self.seconds_per_request)

        # Write metadata to Redis
        try:
            # Save in redis with key = 'results:monitor_id' and value = 'time, status, actual, prediction, anomaly'
            self.db.set('name:%s' % self.stream.id, self.stream.name)
            self.db.set('value_label:%s' % self.stream.id, self.stream.value_label)
            self.db.set('value_unit:%s' % self.stream.id, self.stream.value_unit)
        except Exception:
            self.logger.warn("Could not write results to redis.", exc_info=True)

    def train(self):
        data = self.stream.historic_data()

        for model_input in data:
            self.update(model_input, False) # Don't post anomalies in training

    def loop(self):
        while True:
            data = self.stream.new_data()

            for model_input in data:
                self.update(model_input, True) # Post anomalies when online

            sleep(self.seconds_per_request)

    def update(self, model_input, is_to_post):
        # Pass the input to the model
        result = self.model.run(model_input)

        # Shift results
        result = self.shifter.shift(result)

        # Save multi step predictions
        inference = result.inferences['multiStepPredictions']

        # Take the anomaly_score
        anomaly_score = result.inferences['anomalyScore']

        # Compute the Anomaly Likelihood
        likelihood = self.anomalyLikelihood.anomalyProbability(model_input['value'],
                                                               anomaly_score,
                                                               model_input['time'])

        # Get the predicted value for reporting
        predicted = result.inferences['multiStepBestPredictions'][1]

        # Get timestamp from datetime
        timestamp = calendar.timegm(model_input['time'].timetuple())
#.........这里部分代码省略.........
开发者ID:michaelneale,项目名称:omg-monitor,代码行数:103,代码来源:monitor.py

示例8: Anomaly

# 需要导入模块: from nupic.algorithms.anomaly_likelihood import AnomalyLikelihood [as 别名]
# 或者: from nupic.algorithms.anomaly_likelihood.AnomalyLikelihood import anomalyProbability [as 别名]
class Anomaly(object):
  """Utility class for generating anomaly scores in different ways.

  Supported modes:
    MODE_PURE - the raw anomaly score as computed by computeRawAnomalyScore
    MODE_LIKELIHOOD - uses the AnomalyLikelihood class on top of the raw
        anomaly scores
    MODE_WEIGHTED - multiplies the likelihood result with the raw anomaly score
        that was used to generate the likelihood
  """


  # anomaly modes supported
  MODE_PURE = "pure"
  MODE_LIKELIHOOD = "likelihood"
  MODE_WEIGHTED = "weighted"
  _supportedModes = (MODE_PURE, MODE_LIKELIHOOD, MODE_WEIGHTED)


  def __init__(self, slidingWindowSize = None, mode=MODE_PURE):
    """
    @param slidingWindowSize (optional) - how many elements are summed up;
        enables moving average on final anomaly score; int >= 0
    @param mode (optional) - (string) how to compute anomaly;
        possible values are:
          - "pure" - the default, how much anomal the value is;
              float 0..1 where 1=totally unexpected
          - "likelihood" - uses the anomaly_likelihood code;
              models probability of receiving this value and anomalyScore
          - "weighted" - "pure" anomaly weighted by "likelihood"
              (anomaly * likelihood)
    """
    self._mode = mode
    if slidingWindowSize is not None:
      self._movingAverage = MovingAverage(windowSize=slidingWindowSize)
    else:
      self._movingAverage = None

    if self._mode == Anomaly.MODE_LIKELIHOOD:
      self._likelihood = AnomalyLikelihood() # probabilistic anomaly
    if not self._mode in Anomaly._supportedModes:
      raise ValueError("Invalid anomaly mode; only supported modes are: "
                       "Anomaly.MODE_PURE, Anomaly.MODE_LIKELIHOOD, "
                       "Anomaly.MODE_WEIGHTED; you used: %r" % self._mode)


  def compute(self, activeColumns, predictedColumns, 
				inputValue=None, timestamp=None):
    """Compute the anomaly score as the percent of active columns not predicted.

    @param activeColumns: array of active column indices
    @param predictedColumns: array of columns indices predicted in this step
                             (used for anomaly in step T+1)
    @param inputValue: (optional) value of current input to encoders 
				(eg "cat" for category encoder)
                              	(used in anomaly-likelihood)
    @param timestamp: (optional) date timestamp when the sample occured
                              	(used in anomaly-likelihood)
    @return the computed anomaly score; float 0..1
    """
    # Start by computing the raw anomaly score.
    anomalyScore = computeRawAnomalyScore(activeColumns, predictedColumns)

    # Compute final anomaly based on selected mode.
    if self._mode == Anomaly.MODE_PURE:
      score = anomalyScore
    elif self._mode == Anomaly.MODE_LIKELIHOOD:
      if inputValue is None:
        raise ValueError("Selected anomaly mode 'Anomaly.MODE_LIKELIHOOD' "
                 "requires 'inputValue' as parameter to compute() method. ")

      probability = self._likelihood.anomalyProbability(
          inputValue, anomalyScore, timestamp)
      # low likelihood -> hi anomaly
      score = 1 - probability
    elif self._mode == Anomaly.MODE_WEIGHTED:
      probability = self._likelihood.anomalyProbability(
          inputValue, anomalyScore, timestamp)
      score = anomalyScore * (1 - probability)

    # Last, do moving-average if windowSize was specified.
    if self._movingAverage is not None:
      score = self._movingAverage.next(score)

    return score
开发者ID:ARK1988,项目名称:nupic,代码行数:87,代码来源:anomaly.py

示例9: runAnomaly

# 需要导入模块: from nupic.algorithms.anomaly_likelihood import AnomalyLikelihood [as 别名]
# 或者: from nupic.algorithms.anomaly_likelihood.AnomalyLikelihood import anomalyProbability [as 别名]
def runAnomaly(options):
  """
  Create and run a CLA Model on the given dataset (based on the hotgym anomaly
  client in NuPIC).
  """
  # Load the model params JSON
  with open("model_params.json") as fp:
    modelParams = json.load(fp)

  # Update the resolution value for the encoder
  sensorParams = modelParams['modelParams']['sensorParams']
  numBuckets = modelParams['modelParams']['sensorParams']['encoders']['value'].pop('numBuckets')
  resolution = options.resolution
  if resolution is None:
    resolution = max(0.001,
                     (options.max - options.min) / numBuckets)
  print "Using resolution value: {0}".format(resolution)
  sensorParams['encoders']['value']['resolution'] = resolution

  model = ModelFactory.create(modelParams)
  model.enableInference({'predictedField': 'value'})
  with open (options.inputFile) as fin:
    
    # Open file and setup headers
    # Here we write the log likelihood value as the 'anomaly score'
    # The actual CLA outputs are labeled 'raw anomaly score'
    reader = csv.reader(fin)
    csvWriter = csv.writer(open(options.outputFile,"wb"))
    csvWriter.writerow(["timestamp", "value",
                        "_raw_score", "likelihood_score", "log_likelihood_score"])
    headers = reader.next()
    
    # The anomaly likelihood object
    anomalyLikelihood = AnomalyLikelihood()
    
    # Iterate through each record in the CSV file
    print "Starting processing at",datetime.datetime.now()
    for i, record in enumerate(reader, start=1):
      
      # Convert input data to a dict so we can pass it into the model
      inputData = dict(zip(headers, record))
      inputData["value"] = float(inputData["value"])
      inputData["dttm"] = dateutil.parser.parse(inputData["dttm"])
      #inputData["dttm"] = datetime.datetime.now()
      
      # Send it to the CLA and get back the raw anomaly score
      result = model.run(inputData)
      anomalyScore = result.inferences['anomalyScore']
      
      # Compute the Anomaly Likelihood
      likelihood = anomalyLikelihood.anomalyProbability(
        inputData["value"], anomalyScore, inputData["dttm"])
      logLikelihood = anomalyLikelihood.computeLogLikelihood(likelihood)
      if likelihood > 0.9999:
        print "Anomaly detected:",inputData['dttm'],inputData['value'],likelihood

      # Write results to the output CSV file
      csvWriter.writerow([inputData["dttm"], inputData["value"],
                          anomalyScore, likelihood, logLikelihood])

      # Progress report
      if (i%1000) == 0: print i,"records processed"

  print "Completed processing",i,"records at",datetime.datetime.now()
  print "Anomaly scores for",options.inputFile,
  print "have been written to",options.outputFile
开发者ID:08s011003,项目名称:nupic.subutai,代码行数:68,代码来源:run_anomaly.py

示例10: Anomaly

# 需要导入模块: from nupic.algorithms.anomaly_likelihood import AnomalyLikelihood [as 别名]
# 或者: from nupic.algorithms.anomaly_likelihood.AnomalyLikelihood import anomalyProbability [as 别名]
class Anomaly(object):
  """Utility class for generating anomaly scores in different ways.

  :param slidingWindowSize: [optional] - how many elements are summed up;
      enables moving average on final anomaly score; int >= 0

  :param mode: (string) [optional] how to compute anomaly, one of:

      - :const:`nupic.algorithms.anomaly.Anomaly.MODE_PURE`
      - :const:`nupic.algorithms.anomaly.Anomaly.MODE_LIKELIHOOD`
      - :const:`nupic.algorithms.anomaly.Anomaly.MODE_WEIGHTED`

  :param binaryAnomalyThreshold: [optional] if set [0,1] anomaly score
       will be discretized to 1/0 (1 if >= binaryAnomalyThreshold)
       The transformation is applied after moving average is computed.

  """


  # anomaly modes supported
  MODE_PURE = "pure"
  """
  Default mode. The raw anomaly score as computed by
  :func:`~.anomaly_likelihood.computeRawAnomalyScore`
  """
  MODE_LIKELIHOOD = "likelihood"
  """
  Uses the :class:`~.anomaly_likelihood.AnomalyLikelihood` class, which models
  probability of receiving this value and anomalyScore
  """
  MODE_WEIGHTED = "weighted"
  """
  Multiplies the likelihood result with the raw anomaly score that was used to
  generate the likelihood (anomaly * likelihood)
  """

  _supportedModes = (MODE_PURE, MODE_LIKELIHOOD, MODE_WEIGHTED)


  def __init__(self,
               slidingWindowSize=None,
               mode=MODE_PURE,
               binaryAnomalyThreshold=None):
    self._mode = mode
    if slidingWindowSize is not None:
      self._movingAverage = MovingAverage(windowSize=slidingWindowSize)
    else:
      self._movingAverage = None

    if (self._mode == Anomaly.MODE_LIKELIHOOD or
        self._mode == Anomaly.MODE_WEIGHTED):
      self._likelihood = AnomalyLikelihood() # probabilistic anomaly
    else:
      self._likelihood = None

    if not self._mode in self._supportedModes:
      raise ValueError("Invalid anomaly mode; only supported modes are: "
                       "Anomaly.MODE_PURE, Anomaly.MODE_LIKELIHOOD, "
                       "Anomaly.MODE_WEIGHTED; you used: %r" % self._mode)

    self._binaryThreshold = binaryAnomalyThreshold
    if binaryAnomalyThreshold is not None and (
          not isinstance(binaryAnomalyThreshold, float) or
          binaryAnomalyThreshold >= 1.0  or
          binaryAnomalyThreshold <= 0.0 ):
      raise ValueError("Anomaly: binaryAnomalyThreshold must be from (0,1) "
                       "or None if disabled.")


  def compute(self, activeColumns, predictedColumns,
              inputValue=None, timestamp=None):
    """Compute the anomaly score as the percent of active columns not predicted.

    :param activeColumns: array of active column indices
    :param predictedColumns: array of columns indices predicted in this step
                             (used for anomaly in step T+1)
    :param inputValue: (optional) value of current input to encoders
                                  (eg "cat" for category encoder)
                                  (used in anomaly-likelihood)
    :param timestamp: (optional) date timestamp when the sample occured
                                 (used in anomaly-likelihood)
    :returns: the computed anomaly score; float 0..1
    """
    # Start by computing the raw anomaly score.
    anomalyScore = computeRawAnomalyScore(activeColumns, predictedColumns)

    # Compute final anomaly based on selected mode.
    if self._mode == Anomaly.MODE_PURE:
      score = anomalyScore
    elif self._mode == Anomaly.MODE_LIKELIHOOD:
      if inputValue is None:
        raise ValueError("Selected anomaly mode 'Anomaly.MODE_LIKELIHOOD' "
                 "requires 'inputValue' as parameter to compute() method. ")

      probability = self._likelihood.anomalyProbability(
          inputValue, anomalyScore, timestamp)
      # low likelihood -> hi anomaly
      score = 1 - probability
    elif self._mode == Anomaly.MODE_WEIGHTED:
      probability = self._likelihood.anomalyProbability(
#.........这里部分代码省略.........
开发者ID:Erichy94,项目名称:nupic,代码行数:103,代码来源:anomaly.py

示例11:

# 需要导入模块: from nupic.algorithms.anomaly_likelihood import AnomalyLikelihood [as 别名]
# 或者: from nupic.algorithms.anomaly_likelihood.AnomalyLikelihood import anomalyProbability [as 别名]
    input_event = (numpy.array([x, y, z]), radius)
    timestamp = datetime.datetime.strptime(event.time, "%Y-%m-%dT%H:%M:%S.%fZ")
    # input_event = (timestamp, input_event)
    modelInput = {}
    modelInput["event"] = input_event
    modelInput["timestamp"] = (timestamp)
    result = model.run(modelInput)
    model.save(MODELSTATE)
    # print result

    
    if not PREDICT:
      # Anomaly-Stats: 
      anomalyScore = result.inferences["anomalyScore"]
      # By default 0.5 for the first 600 iterations!
      likelihood = anomalyLikelihood.anomalyProbability(modelInput["event"], anomalyScore, modelInput["timestamp"])
      logLikelihood = anomalyLikelihood.computeLogLikelihood(likelihood)
      AnomalyScores.append(anomalyScore)
      LikelihoodScores.append([modelInput["timestamp"], modelInput["event"], likelihood])
      prediction = 'None'


    if PREDICT:
      # Handle Anomaly:
      anomalyScore, likelihood, logLikelihood = 'None', 'None', 'None'
      pred_result = shifter.shift(result)
      if result.inferences["multiStepBestPredictions"][1]:
        prediction = result.inferences["multiStepBestPredictions"][1]
        print prediction
      else:
        prediction = 'None'
开发者ID:htm-community,项目名称:nostradamIQ,代码行数:33,代码来源:OLDrun.py

示例12: AnomalyLikelihoodRegion

# 需要导入模块: from nupic.algorithms.anomaly_likelihood import AnomalyLikelihood [as 别名]
# 或者: from nupic.algorithms.anomaly_likelihood.AnomalyLikelihood import anomalyProbability [as 别名]

#.........这里部分代码省略.........
          "count": 1,
          "required": True,
          "isDefaultInput": False
        },
      },
      "outputs": {
        "anomalyLikelihood": {
          "description": "The resultant anomaly likelihood",
          "dataType": "Real32",
          "count": 1,
          "isDefaultOutput": True,
        },
      },
      "parameters": {
        "learningPeriod": {
          "description": "The number of iterations required for the\
                          algorithm to learn the basic patterns in the dataset\
                          and for the anomaly score to 'settle down'.",
          "dataType": "UInt32",
          "count": 1,
          "constraints": "",
          "defaultValue": 288,
          "accessMode": "ReadWrite"
        },
        "estimationSamples": {
          "description": "The number of reasonable anomaly scores\
                           required for the initial estimate of the\
                           Gaussian.",
          "dataType": "UInt32",
          "count": 1,
          "constraints": "",
          "defaultValue": 100,
          "accessMode": "ReadWrite"
        },
        "historicWindowSize": {
          "description": "Size of sliding window of historical data\
                          points to maintain for periodic reestimation\
                          of the Gaussian.",
          "dataType": "UInt32",
          "count": 1,
          "constraints": "",
          "defaultValue": 8640,
          "accessMode": "ReadWrite"
        },
        "reestimationPeriod": {
          "description": "How often we re-estimate the Gaussian\
                          distribution.",
          "dataType": "UInt32",
          "count": 1,
          "constraints": "",
          "defaultValue": 100,
          "accessMode": "ReadWrite"
        },
      },
      "commands": {
      },
    }


  def __init__(self,
               learningPeriod = 288,
               estimationSamples = 100,
               historicWindowSize = 8640,
               reestimationPeriod = 100):
    self.anomalyLikelihood = AnomalyLikelihood(
      learningPeriod = learningPeriod,
      estimationSamples = estimationSamples,
      historicWindowSize = historicWindowSize,
      reestimationPeriod = reestimationPeriod)

  def __eq__(self, other):
    return self.anomalyLikelihood == other.anomalyLikelihood


  def __ne__(self, other):
    return not self == other


  @classmethod
  def read(cls, proto):
    anomalyLikelihoodRegion = object.__new__(cls)
    anomalyLikelihoodRegion.anomalyLikelihood = AnomalyLikelihood.read(proto)

    return anomalyLikelihoodRegion


  def write(self, proto):
    self.anomalyLikelihood.write(proto)


  def initialize(self):
    pass


  def compute(self, inputs, outputs):
    anomalyScore = inputs["rawAnomalyScore"][0]
    value = inputs["metricValue"][0]
    anomalyProbability = self.anomalyLikelihood.anomalyProbability(
      value, anomalyScore)
    outputs["anomalyLikelihood"][0] = anomalyProbability
开发者ID:mrcslws,项目名称:nupic,代码行数:104,代码来源:AnomalyLikelihoodRegion.py

示例13: Anomaly

# 需要导入模块: from nupic.algorithms.anomaly_likelihood import AnomalyLikelihood [as 别名]
# 或者: from nupic.algorithms.anomaly_likelihood.AnomalyLikelihood import anomalyProbability [as 别名]
class Anomaly(object):
  """Utility class for generating anomaly scores in different ways.

  Supported modes:
    MODE_PURE - the raw anomaly score as computed by computeRawAnomalyScore
    MODE_LIKELIHOOD - uses the AnomalyLikelihood class on top of the raw
        anomaly scores
    MODE_WEIGHTED - multiplies the likelihood result with the raw anomaly score
        that was used to generate the likelihood
  """


  # anomaly modes supported
  MODE_PURE = "pure"
  MODE_LIKELIHOOD = "likelihood"
  MODE_WEIGHTED = "weighted"
  _supportedModes = (MODE_PURE, MODE_LIKELIHOOD, MODE_WEIGHTED)


  def __init__(self, slidingWindowSize = None, mode=MODE_PURE):
    """
    @param slidingWindowSize (optional) - how many elements are summed up;
        enables moving average on final anomaly score; int >= 0
    @param mode (optional) - (string) how to compute anomaly;
        possible values are:
          - "pure" - the default, how much anomal the value is;
              float 0..1 where 1=totally unexpected
          - "likelihood" - uses the anomaly_likelihood code;
              models probability of receiving this value and anomalyScore
          - "weighted" - "pure" anomaly weighted by "likelihood"
              (anomaly * likelihood)
    """
    self._mode = mode
    self._useMovingAverage = slidingWindowSize > 0
    self._buf = None
    self._i = None

    # Using cumulative anomaly, sliding window
    if self._useMovingAverage:
      self._windowSize = slidingWindowSize
      # Sliding window buffer
      self._buf = numpy.array([0] * self._windowSize, dtype=numpy.float)
      self._i = 0 # index pointer to actual position
    elif slidingWindowSize is not None:
      raise TypeError(
          "Anomaly: if you define slidingWindowSize, it has to be an "
          "integer > 0;  slidingWindowSize=%r" % slidingWindowSize)

    if self._mode == Anomaly.MODE_LIKELIHOOD:
      self._likelihood = AnomalyLikelihood() # probabilistic anomaly
    if not self._mode in Anomaly._supportedModes:
      raise ValueError("Invalid anomaly mode; only supported modes are: "
                       "Anomaly.MODE_PURE, Anomaly.MODE_LIKELIHOOD, "
                       "Anomaly.MODE_WEIGHTED; you used: %r" % self._mode)


  def computeAnomalyScore(self, activeColumns, predictedColumns, value=None,
                          timestamp=None):
    """Compute the anomaly score as the percent of active columns not predicted.

    @param activeColumns: array of active column indices
    @param predictedColumns: array of columns indices predicted in this step
                             (used for anomaly in step T+1)
    @param value: (optional) metric value of current input
                              (used in anomaly-likelihood)
    @param timestamp: (optional) date timestamp when the sample occured
                              (used in anomaly-likelihood)
    @return the computed anomaly score; float 0..1
    """
    # Start by computing the raw anomaly score.
    anomalyScore = computeRawAnomalyScore(activeColumns, predictedColumns)

    # Compute final anomaly based on selected mode.
    if self._mode == Anomaly.MODE_PURE:
      score = anomalyScore
    elif self._mode == Anomaly.MODE_LIKELIHOOD:
      # TODO add tests for likelihood modes
      probability = self._likelihood.anomalyProbability(
          value, anomalyScore, timestamp)
      score = probability
    elif self._mode == Anomaly.MODE_WEIGHTED:
      probability = self._likelihood.anomalyProbability(
          value, anomalyScore, timestamp)
      score = anomalyScore * probability

    # Last, do moving-average if windowSize was specified.
    if self._useMovingAverage:
      score = self._movingAverage(score)

    return score


  def _movingAverage(self, newElement=None):
    """moving average

    @param newValue (optional) add a new element before computing the avg
    @return moving average of self._windowSize last elements
    """
    if newElement is not None:
      self._buf[self._i]= newElement
#.........这里部分代码省略.........
开发者ID:Aaron-Gao,项目名称:nupic,代码行数:103,代码来源:anomaly.py


注:本文中的nupic.algorithms.anomaly_likelihood.AnomalyLikelihood.anomalyProbability方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。