本文整理汇总了Python中numpy.core.umath.exp函数的典型用法代码示例。如果您正苦于以下问题:Python exp函数的具体用法?Python exp怎么用?Python exp使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了exp函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: model_two_basis_functions
def model_two_basis_functions():
""" A test function that returns a model similar to model(), except
that it uses the shapelet basis functions as the surface brightness
and does not normalize.
"""
data = empty((nepochs, grid_size, grid_size))
beta2 = beta ** 2
for t, z in star_track(nepochs):
if t == 0:
x = raytrace()
else:
x = raytrace(rE_true, z)
n = 0
K1 = 1.0 / sqrt(2 ** n * sqrt(pi) * factorial(n, 1) * beta)
H1 = hermite(n)
data[t] = (K1 * H1(x.real / beta) * exp(-x.real ** 2 / (2 * beta2))) * (
K1 * H1(x.imag / beta) * exp(-x.imag ** 2 / (2 * beta2))
)
# data[t] *= 100
# n = 1
# K1 = 1.0/sqrt(2**n * sqrt(pi) * factorial(n,1) * beta)
# H1 = hermite(n)
#
# data[t] += (K1 * H1(x.real/beta) * exp(-x.real**2/(2*beta2))) * \
# (K1 * H1(x.imag/beta) * exp(-x.imag**2/(2*beta2)))
return data
示例2: save_bessel_functions
def save_bessel_functions(N):
"""Generate N 2D shapelets and plot."""
beta2 = beta ** 2
B = empty((grid_size, grid_size)) # Don't want matrix behaviour here
# ---------------------------------------------------------------------------
# Basis function constants, and hermite polynomials
# ---------------------------------------------------------------------------
vals = [[n, 1.0 / sqrt((2 ** n) * sqrt(pi) * factorial(n, 1) * beta), 0, 0, 0] for n in xrange(N)]
expreal = exp(-theta.real ** 2 / (2 * beta2))
expimag = exp(-theta.imag ** 2 / (2 * beta2))
for n, K, H, _, _ in vals:
vals[n][3] = K * jn(n, theta.real) * expreal
vals[n][4] = K * jn(n, theta.imag) * expimag
pylab.figure()
l = 0
for v1 in vals:
for v2 in vals:
B = v1[3] * v2[4]
pylab.subplot(N, N, l + 1)
pylab.axis("off")
pylab.imshow(B.T)
l += 1
pylab.suptitle("Shapelets N=%i Beta=%.4f" % (N, beta))
# pylab.savefig("B%i.png" % N)
pylab.show()
示例3: integrand
def integrand(bt, x):
global a, st, G, lbd, ym, kp, c, var
fun=-1
if var==1:
fun=polint(bt)*cos(bt*x)*(lbd+2*G)*(exp(bt*b)*(kp**2-1-2*bt*b+2*kp*bt*b)+exp(-bt*b)*(kp**2-1+2*bt*b-2*kp*bt*b))/((kp-1)*(lbd*(kp*exp(2*bt*b)+kp*exp(-2*bt*b)+2)+G*kp*(exp(2*bt*b)+exp(-2*bt*b)))+2*G*(kp**2+kp+4*bt**2 * b **2 -2))
elif var==2:
fun=polint(bt)*cos(bt*x)*(G*(exp(bt*b)*(kp**2-kp+2*kp*bt*b)-exp(-bt*b)*(kp**2-kp-2*kp*bt*b))+lbd*(kp**2-kp)*(exp(bt*b)-exp(-bt*b)))/((kp**2-kp)*(lbd+G)*sinh(2*bt*b)+4*kp*G*b*bt)
return fun
示例4: sigmoid
def sigmoid(inX):
'''
Sigmoid函数
:param inX:
:return: 参数
'''
return 1.0 / (1 + exp(-inX))
示例5: ridgeTest
def ridgeTest(xArr, yArr):
'''
计算30不同的参数lam 所对应的回归系数
数据标准化处理:所有的特征都减去各自的均值并除以方差;
:param xArr: 输入值
:param yArr: 真实值
:return:
'''
xMat = mat(xArr)
yMat = mat(yArr).T
# mean()计算均值
xMean = mean(xMat, 0)
yMean = mean(yMat, 0)
xVar = var(xMat, 0) # var() 计算方差
xMat = (xMat - xMean) / xVar
yMat = yMat - yMean
numTestPts = 30 # 迭代次数
wMat = zeros((numTestPts, shape(xMat)[1])) # 返回矩阵
for i in range(numTestPts):
ws = ridgeRegres(xMat, yMat, exp(i - 10)) # 计算回归系数,指数级
wMat[i, :] = ws.T
return wMat
示例6: lwlr
def lwlr(testPoint, xArr, yArr, k=1.0):
'''
局部加权线性回归,
回归系数计算公式:w = (X^TWX)^(-1)X^TWy
高斯核计算公式:w(i, i) = exp{[x^(i) - x] / (-2 * k^2)}
:param testPoint: 坐标点
:param xArr: 输入值
:param yArr: 真实值
:param k: 高斯核参数,用户自定义
:return:
'''
xMat = mat(xArr)
yMat = mat(yArr).T
m = shape(xMat)[0]
weights = mat(eye((m))) # 初始化权重矩阵
for j in range(m):
diffMat = testPoint - xMat[j, :]
weights[j, j] = exp(diffMat * diffMat.T / (-2.0 * k ** 2)) # 高斯核
xTx = xMat.T * (weights * xMat)
if linalg.det(xTx) == 0.0: # 判断矩阵是否可逆
print "This matrix is singular, cannot do inverse"
return
ws = xTx.I * (xMat.T * (weights * yMat))
return testPoint * ws
示例7: calculate_ideogram
def calculate_ideogram(ages, errors, n=500):
from numpy import array, linspace, zeros, ones
from numpy.core.umath import exp
from math import pi
ages, errors = array(ages), array(errors)
lages = ages - errors * 2
uages = ages + errors * 2
xmax, xmin = uages.max(), lages.min()
spread = xmax - xmin
xmax += spread * 0.1
xmin -= spread * 0.1
bins = linspace(xmin, xmax, n)
probs = zeros(n)
for ai, ei in zip(ages, errors):
if abs(ai) < 1e-10 or abs(ei) < 1e-10:
continue
# calculate probability curve for ai+/-ei
# p=1/(2*pi*sigma2) *exp (-(x-u)**2)/(2*sigma2)
# see http://en.wikipedia.org/wiki/Normal_distribution
ds = (ones(n) * ai - bins) ** 2
es = ones(n) * ei
es2 = 2 * es * es
gs = (es2 * pi) ** -0.5 * exp(-ds / es2)
# cumulate probabilities
# numpy element_wise addition
probs += gs
return tuple(bins), tuple(probs), xmin, xmax
示例8: profile_exponential
def profile_exponential(R, Ie=0.40, Rd=0.50):
return Ie * exp(-abs(R) / Rd)
beta = 0.20 # arcsec - Basis function normalization
Nbases = 25 # sqrt(Number of basis functions)
grid_phys = 2.0 # arcsec - Physical size across grid
grid_radius = 71 # pixels
grid_size = 2 * grid_radius + 1 # pixels
cell_size = grid_phys / grid_size # arcsec/pixel
示例9: pseudo_peak
def pseudo_peak(center, start, stop, step, magnitude=500, peak_width=0.004, channels=1):
x = linspace(start, stop, step)
gaussian = lambda x: magnitude * exp(-((center - x) / peak_width) ** 2)
for i, d in enumerate(gaussian(x)):
if abs(center - x[i]) < peak_width:
# d = magnitude
# for j in xrange(channels):
d = magnitude + magnitude / 50.0 * random.random()
yield [d * (j + 1) for j in range(channels)]
示例10: test_priority
def test_priority(self):
class A(object):
def __array__(self):
return np.zeros(1)
def __array_wrap__(self, arr, context):
r = type(self)()
r.arr = arr
r.context = context
return r
class B(A):
__array_priority__ = 20.0
class C(A):
__array_priority__ = 40.0
x = np.zeros(1)
a = A()
b = B()
c = C()
f = ncu.minimum
self.assertTrue(type(f(x, x)) is np.ndarray)
self.assertTrue(type(f(x, a)) is A)
self.assertTrue(type(f(x, b)) is B)
self.assertTrue(type(f(x, c)) is C)
self.assertTrue(type(f(a, x)) is A)
self.assertTrue(type(f(b, x)) is B)
self.assertTrue(type(f(c, x)) is C)
self.assertTrue(type(f(a, a)) is A)
self.assertTrue(type(f(a, b)) is B)
self.assertTrue(type(f(b, a)) is B)
self.assertTrue(type(f(b, b)) is B)
self.assertTrue(type(f(b, c)) is C)
self.assertTrue(type(f(c, b)) is C)
self.assertTrue(type(f(c, c)) is C)
self.assertTrue(type(ncu.exp(a) is A))
self.assertTrue(type(ncu.exp(b) is B))
self.assertTrue(type(ncu.exp(c) is C))
示例11: check_priority
def check_priority(self):
class A(object):
def __array__(self):
return zeros(1)
def __array_wrap__(self, arr, context):
r = type(self)()
r.arr = arr
r.context = context
return r
class B(A):
__array_priority__ = 20.0
class C(A):
__array_priority__ = 40.0
x = zeros(1)
a = A()
b = B()
c = C()
f = minimum
self.failUnless(type(f(x, x)) is ndarray)
self.failUnless(type(f(x, a)) is A)
self.failUnless(type(f(x, b)) is B)
self.failUnless(type(f(x, c)) is C)
self.failUnless(type(f(a, x)) is A)
self.failUnless(type(f(b, x)) is B)
self.failUnless(type(f(c, x)) is C)
self.failUnless(type(f(a, a)) is A)
self.failUnless(type(f(a, b)) is B)
self.failUnless(type(f(b, a)) is B)
self.failUnless(type(f(b, b)) is B)
self.failUnless(type(f(b, c)) is C)
self.failUnless(type(f(c, b)) is C)
self.failUnless(type(f(c, c)) is C)
self.failUnless(type(exp(a) is A))
self.failUnless(type(exp(b) is B))
self.failUnless(type(exp(c) is C))
示例12: gauss_spline
def gauss_spline(x, n):
"""Gaussian approximation to B-spline basis function of order n.
Parameters
----------
n : int
The order of the spline. Must be nonnegative, i.e. n >= 0
References
----------
.. [1] Bouma H., Vilanova A., Bescos J.O., ter Haar Romeny B.M., Gerritsen
F.A. (2007) Fast and Accurate Gaussian Derivatives Based on B-Splines. In:
Sgallari F., Murli A., Paragios N. (eds) Scale Space and Variational
Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer
Science, vol 4485. Springer, Berlin, Heidelberg
"""
signsq = (n + 1) / 12.0
return 1 / sqrt(2 * pi * signsq) * exp(-x ** 2 / 2 / signsq)
示例13: adaBoostTrainDS
def adaBoostTrainDS(dataArr, classLabels, numIt=40):
'''
基于单层决策树的AdaBoost训练过程
:param dataArr: 数据集
:param classLabels: 类标签
:param numIt: 迭代次数, 用户自定义指定
:return: weakClassArr, 弱分类器集合;aggClassEst,每个数据点的类别估计累计值
'''
# 初始化
weakClassArr = []
m = shape(dataArr)[0]
D = mat(ones((m, 1)) / m) # 初始化概率分布向量,其元素之和为 1
aggClassEst = mat(zeros((m, 1)))
for i in range(numIt):
# 构建单层决策树
bestStump, error, classEst = buildStump(dataArr, classLabels, D)
print "D:", D.T
# alpha每个分类器配备的权重值, 计算公式:alpha = (1/2) * ln[(1-e) / e]
alpha = float(0.5 * log((1.0 - error) / max(error, 1e-16)))
bestStump['alpha'] = alpha
weakClassArr.append(bestStump) # 存储最佳决策树
print "classEst: ", classEst.T
# 更新权重向量D
# 若正确分类,D[t + 1] = [D[t]*exp(-a) / sum(D)]
# 若错误分类,D[t + 1] = [D[t]*exp(+a) / sum(D)]
expon = multiply(-1 * alpha * mat(classLabels).T, classEst)
D = multiply(D, exp(expon)) # Calc New D for next iteration
D = D / D.sum()
aggClassEst += alpha * classEst # 更新累计类别估计值
print "aggClassEst: ", aggClassEst.T
aggErrors = multiply(sign(aggClassEst) != mat(classLabels).T, ones((m, 1)))
errorRate = aggErrors.sum() / m # 计算错误率
print "total error: ", errorRate
if errorRate == 0.0:
break # 为0, 退出循环
return weakClassArr, aggClassEst
示例14: _cumulative_probability
def _cumulative_probability(self, ages, errors, xmi, xma):
bins = linspace(xmi, xma, N)
probs = zeros(N)
for ai, ei in zip(ages, errors):
if abs(ai) < 1e-10 or abs(ei) < 1e-10:
continue
# calculate probability curve for ai+/-ei
# p=1/(2*pi*sigma2) *exp (-(x-u)**2)/(2*sigma2)
# see http://en.wikipedia.org/wiki/Normal_distribution
ds = (ones(N) * ai - bins) ** 2
es = ones(N) * ei
es2 = 2 * es * es
gs = (es2 * pi) ** -0.5 * exp(-ds / es2)
# cumulate probabilities
# numpy element_wise addition
probs += gs
return bins, probs
示例15: kernelTrans
def kernelTrans(X, A, kTup):
'''
高斯径向基核函数,将数据从一个低维特征空间转换到高维特征空间
K(x, y) = exp{[-(||x - y||)^2] / (2 * &^2}
:param X: 数值型变量1
:param A: 数值型变量2
:param kTup: 元组
:return:
'''
m, n = shape(X)
K = mat(zeros((m, 1)))
if kTup[0] == 'lin':
K = X * A.T #
elif kTup[0] == 'rbf':
for j in range(m):
deltaRow = X[j, :] - A
K[j] = deltaRow * deltaRow.T
K = exp(K / (-1 * kTup[1] ** 2)) #
else:
raise NameError('Houston We Have a Problem -- \
That Kernel is not recognized')
return K