本文整理汇总了Python中numpy.core.numeric.zeros_like函数的典型用法代码示例。如果您正苦于以下问题:Python zeros_like函数的具体用法?Python zeros_like怎么用?Python zeros_like使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了zeros_like函数的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
def __init__(self, *shape):
if len(shape) == 1 and isinstance(shape[0], tuple):
shape = shape[0]
x = as_strided(_nx.zeros(1), shape=shape,
strides=_nx.zeros_like(shape))
self._it = _nx.nditer(x, flags=['multi_index', 'zerosize_ok'],
order='C')
示例2: polyval
def polyval(p, x):
"""
Evaluate a polynomial at specific values.
If p is of length N, this function returns the value:
p[0]*(x**N-1) + p[1]*(x**N-2) + ... + p[N-2]*x + p[N-1]
If x is a sequence then p(x) will be returned for all elements of x.
If x is another polynomial then the composite polynomial p(x) will
be returned.
Parameters
----------
p : {array_like, poly1d}
1D array of polynomial coefficients from highest degree to zero or an
instance of poly1d.
x : {array_like, poly1d}
A number, a 1D array of numbers, or an instance of poly1d.
Returns
-------
values : {ndarray, poly1d}
If either p or x is an instance of poly1d, then an instance of poly1d
is returned, otherwise a 1D array is returned. In the case where x is
a poly1d, the result is the composition of the two polynomials, i.e.,
substitution is used.
See Also
--------
poly1d: A polynomial class.
Notes
-----
Horner's method is used to evaluate the polynomial. Even so, for
polynomials of high degree the values may be inaccurate due to
rounding errors. Use carefully.
Examples
--------
>>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1
76
"""
p = NX.asarray(p)
if isinstance(x, poly1d):
y = 0
else:
x = NX.asarray(x)
y = NX.zeros_like(x)
for i in range(len(p)):
y = x * y + p[i]
return y
示例3: _set_selection
def _set_selection(self, val):
oldval = self._selection
self._selection = val
datasource = getattr(self.plot, self.axis, None)
if datasource is not None:
mdname = self.metadata_name
# Set the selection range on the datasource
datasource.metadata[mdname] = val
datasource.metadata_changed = {mdname: val}
# Set the selection mask on the datasource
selection_masks = \
datasource.metadata.setdefault(self.mask_metadata_name, [])
for index in range(len(selection_masks)):
# if id(selection_masks[index]) == id(self._selection_mask):
if True:
del selection_masks[index]
break
# Set the selection mode on the datasource
datasource.metadata[self.selection_mode_metadata_name] = \
self.selection_mode
if val is not None:
low, high = val
data_pts = datasource.get_data()
new_mask = (data_pts >= low) & (data_pts <= high)
selection_masks.append(new_mask)
self._selection_mask = new_mask
else:
# Set the selection mask to false.
data_pts = datasource.get_data()
new_mask = zeros_like(data_pts,dtype=bool)
selection_masks.append(new_mask)
self._selection_mask = new_mask
datasource.metadata_changed = {self.mask_metadata_name: val}
self.trait_property_changed("selection", oldval, val)
for l in self.listeners:
if hasattr(l, "set_value_selection"):
l.set_value_selection(val)
return
示例4: fix
def fix(x, y=None):
"""
Round to nearest integer towards zero.
Round an array of floats element-wise to nearest integer towards zero.
The rounded values are returned as floats.
Parameters
----------
x : array_like
An array of floats to be rounded
y : ndarray, optional
Output array
Returns
-------
out : ndarray of floats
The array of rounded numbers
See Also
--------
trunc, floor, ceil
around : Round to given number of decimals
Examples
--------
>>> np.fix(3.14)
3.0
>>> np.fix(3)
3.0
>>> np.fix([2.1, 2.9, -2.1, -2.9])
array([ 2., 2., -2., -2.])
"""
x = nx.asanyarray(x)
if y is None:
y = nx.zeros_like(x)
y1 = nx.floor(x)
y2 = nx.ceil(x)
y[...] = nx.where(x >= 0, y1, y2)
return y
示例5: recommend
def recommend(self, evidences, n):
#Array of item bought
evidencesVec = zeros_like(self.ItemPrior)
evidencesVec[evidences] = 1
p_z_newUser = self.pLSAmodel.folding_in(evidencesVec)
p_item_z = self.pLSAmodel.p_w_z
p_item_newUser = zeros((p_item_z.shape[0]))
for i in range(p_item_z.shape[1]):
p_item_newUser+=p_item_z[:,i] * p_z_newUser[0]
ind = argsort(p_item_newUser)
if n == -1:
return ind
else:
return ind[-n:]
示例6: polyval
def polyval(p, x):
"""Evaluate the polynomial p at x. If x is a polynomial then composition.
Description:
If p is of length N, this function returns the value:
p[0]*(x**N-1) + p[1]*(x**N-2) + ... + p[N-2]*x + p[N-1]
x can be a sequence and p(x) will be returned for all elements of x.
or x can be another polynomial and the composite polynomial p(x) will be
returned.
Notice: This can produce inaccurate results for polynomials with
significant variability. Use carefully.
"""
p = NX.asarray(p)
if isinstance(x, poly1d):
y = 0
else:
x = NX.asarray(x)
y = NX.zeros_like(x)
for i in range(len(p)):
y = x * y + p[i]
return y
示例7: polyval
def polyval(p, x):
"""
Evaluate a polynomial at specific values.
If `p` is of length N, this function returns the value:
``p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1]``
If `x` is a sequence, then `p(x)` is returned for each element of `x`.
If `x` is another polynomial then the composite polynomial `p(x(t))`
is returned.
Parameters
----------
p : array_like or poly1d object
1D array of polynomial coefficients (including coefficients equal
to zero) from highest degree to the constant term, or an
instance of poly1d.
x : array_like or poly1d object
A number, a 1D array of numbers, or an instance of poly1d, "at"
which to evaluate `p`.
Returns
-------
values : ndarray or poly1d
If `x` is a poly1d instance, the result is the composition of the two
polynomials, i.e., `x` is "substituted" in `p` and the simplified
result is returned. In addition, the type of `x` - array_like or
poly1d - governs the type of the output: `x` array_like => `values`
array_like, `x` a poly1d object => `values` is also.
See Also
--------
poly1d: A polynomial class.
Notes
-----
Horner's scheme [1]_ is used to evaluate the polynomial. Even so,
for polynomials of high degree the values may be inaccurate due to
rounding errors. Use carefully.
References
----------
.. [1] I. N. Bronshtein, K. A. Semendyayev, and K. A. Hirsch (Eng.
trans. Ed.), *Handbook of Mathematics*, New York, Van Nostrand
Reinhold Co., 1985, pg. 720.
Examples
--------
>>> np.polyval([3,0,1], 5) # 3 * 5**2 + 0 * 5**1 + 1
76
>>> np.polyval([3,0,1], np.poly1d(5))
poly1d([ 76.])
>>> np.polyval(np.poly1d([3,0,1]), 5)
76
>>> np.polyval(np.poly1d([3,0,1]), np.poly1d(5))
poly1d([ 76.])
"""
p = NX.asarray(p)
if isinstance(x, poly1d):
y = 0
else:
x = NX.asarray(x)
y = NX.zeros_like(x)
for i in range(len(p)):
y = x * y + p[i]
return y
示例8: __init__
def __init__(self, *shape):
x = as_strided(_nx.zeros(1), shape=shape, strides=_nx.zeros_like(shape))
self._it = _nx.nditer(x, flags=['multi_index'], order='C')
示例9: main
def main():
Omega = 1
bz = BelousovZhabotinskii(Omega)
#u0 = bz.max_u()
u0 = bz.u_stationary()*2
v0 = bz.v_stationary()
y0 = [u0,v0]
max_t = 10.0
t = np.arange(0,max_t,0.0001)
u_nullcline = np.logspace(-4, 0, 100000)*Omega
v_nullclines = bz.nullcline(u_nullcline)
y = odeint(bz.dy_dt,y0,t)
plt.Figure()
plt.plot(u_nullcline, v_nullclines[0])
plt.plot(u_nullcline, v_nullclines[1])
plt.plot(y[:,0],y[:,1])
plt.loglog()
plt.xlim([5e-5*Omega,2e0*Omega])
#plt.show()
plt.savefig("bz_wave_phase_plot.png")
plt.clf()
plt.plot(t,y[:,0])
plt.plot(t,y[:,1])
plt.plot(t,bz.w(y[:,0],y[:,1]))
plt.yscale('log')
plt.xlim((0,5))
#plt.show()
plt.savefig("bz_wave_concen_versus_time.png")
plt.clf()
h = 0.001
x = np.arange(0,20,h)
u0 = zeros_like(x) + bz.u_stationary()
v0 = zeros_like(x) + bz.v_stationary()
u0[x<1] = bz.u_stationary()*2
y = np.vstack((u0,v0))
if 1:
dt = 0.0000001
iterations = int(max_t/dt)
out_every = iterations/1000
#out_every = 1000
#plt.ion()
plot_u, = plt.plot(x,u0)
plot_v, = plt.plot(x,v0)
plt.yscale('log')
plt.ylim((bz.u_stationary()/10,bz.max_u()))
#plt.show()
dydt_old = bz.dy_dt_diffuse(y, t, h)
for i in range(0,iterations):
t = i*dt
if (i%out_every == 0):
plot_u.set_ydata(y[0,:])
plot_v.set_ydata(y[1,:])
#plt.draw()
plt.savefig("bz_wave_" + '%04d'%i + ".png")
dydt = bz.dy_dt_diffuse(y, t, h)
#y = y + dt*dydt
y = y + 3.0/2.0*dt*dydt - 0.5*dt*dydt_old
dydt_old = dydt
示例10: laplace
def laplace(self,u,h):
ret = zeros_like(u)
ret[1:-1] = (u[0:-2] - 2.0*u[1:-1] + u[2:])/h**2
ret[0] = (-u[0] + u[1])/h**2
ret[-1] = (u[-2] - u[-1])/h**2
return ret