当前位置: 首页>>代码示例>>Python>>正文


Python core.sqrt函数代码示例

本文整理汇总了Python中numpy.core.sqrt函数的典型用法代码示例。如果您正苦于以下问题:Python sqrt函数的具体用法?Python sqrt怎么用?Python sqrt使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了sqrt函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: ihfft

def ihfft(a, n=None, axis=-1, norm=None):
    """
    Compute the inverse FFT of a signal that has Hermitian symmetry.

    Parameters
    ----------
    a : array_like
        Input array.
    n : int, optional
        Length of the inverse FFT, the number of points along
        transformation axis in the input to use.  If `n` is smaller than
        the length of the input, the input is cropped.  If it is larger,
        the input is padded with zeros. If `n` is not given, the length of
        the input along the axis specified by `axis` is used.
    axis : int, optional
        Axis over which to compute the inverse FFT. If not given, the last
        axis is used.
    norm : {None, "ortho"}, optional
        Normalization mode (see `numpy.fft`). Default is None.

        .. versionadded:: 1.10.0

    Returns
    -------
    out : complex ndarray
        The truncated or zero-padded input, transformed along the axis
        indicated by `axis`, or the last one if `axis` is not specified.
        The length of the transformed axis is ``n//2 + 1``.

    See also
    --------
    hfft, irfft

    Notes
    -----
    `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the
    opposite case: here the signal has Hermitian symmetry in the time
    domain and is real in the frequency domain. So here it's `hfft` for
    which you must supply the length of the result if it is to be odd:

    * even: ``ihfft(hfft(a, 2*len(a) - 2) == a``, within roundoff error,
    * odd: ``ihfft(hfft(a, 2*len(a) - 1) == a``, within roundoff error.

    Examples
    --------
    >>> spectrum = np.array([ 15, -4, 0, -1, 0, -4])
    >>> np.fft.ifft(spectrum)
    array([ 1.+0.j,  2.-0.j,  3.+0.j,  4.+0.j,  3.+0.j,  2.-0.j])
    >>> np.fft.ihfft(spectrum)
    array([ 1.-0.j,  2.-0.j,  3.-0.j,  4.-0.j])

    """
    # The copy may be required for multithreading.
    a = array(a, copy=True, dtype=float)
    if n is None:
        n = a.shape[axis]
    unitary = _unitary(norm)
    output = conjugate(rfft(a, n, axis))
    return output * (1 / (sqrt(n) if unitary else n))
开发者ID:bennyrowland,项目名称:numpy,代码行数:59,代码来源:fftpack.py

示例2: norm

def norm(x):
    """
    Take the Frobenius norm of matrix x

    :param x: a sparse matrix
    :type x: scipy.sparse type matrix
    :returns: the Frobenius norm
    """
    if not issparse(x):
        raise TypeError("Input is not a sparse matrix")

    return sqrt((x.data**2).sum())
开发者ID:alexhock,项目名称:unsupervised,代码行数:12,代码来源:_linalg.py

示例3: __getattr__

            self.array.__setattr__(attr, value)
        except AttributeError:
            object.__setattr__(self, attr, value)

    # Only called after other approaches fail.
    def __getattr__(self,attr):
        if (attr == 'array'):
            return object.__getattribute__(self, attr)
        return self.array.__getattribute__(attr)

#############################################################
# Test of class container
#############################################################
if __name__ == '__main__':
    temp=reshape(arange(10000),(100,100))

    ua=container(temp)
    # new object created begin test
    print dir(ua)
    print shape(ua),ua.shape # I have changed Numeric.py

    ua_small=ua[:3,:5]
    print ua_small
    ua_small[0,0]=10  # this did not change ua[0,0], which is not normal behavior
    print ua_small[0,0],ua[0,0]
    print sin(ua_small)/3.*6.+sqrt(ua_small**2)
    print less(ua_small,103),type(less(ua_small,103))
    print type(ua_small*reshape(arange(15),shape(ua_small)))
    print reshape(ua_small,(5,3))
    print transpose(ua_small)
开发者ID:beiko-lab,项目名称:gengis,代码行数:30,代码来源:user_array.py

示例4: norm

def norm(x, ord=None):
    """
    Matrix or vector norm.

    Parameters
    ----------
    x : array_like, shape (M,) or (M, N)
        Input array.
    ord : {2, int, inf, -inf, 'fro'}
        Order of the norm (see table under ``Notes``).

    Returns
    -------
    n : float
        Norm of the matrix or vector

    Notes
    -----
    For values ord < 0, the result is, strictly speaking, not a
    mathematical 'norm', but it may still be useful for numerical
    purposes.

    The following norms can be calculated:

    =====  ============================  ==========================
    ord    norm for matrices             norm for vectors
    =====  ============================  ==========================
    None   Frobenius norm                2-norm
    'fro'  Frobenius norm                --
    inf    max(sum(abs(x), axis=1))      max(abs(x))
    -inf   min(sum(abs(x), axis=1))      min(abs(x))
    1      max(sum(abs(x), axis=0))      as below
    -1     min(sum(abs(x), axis=0))      as below
    2      2-norm (largest sing. value)  as below
    -2     smallest singular value       as below
    other  --                            sum(abs(x)**ord)**(1./ord)
    =====  ============================  ==========================

    """
    x = asarray(x)
    nd = len(x.shape)
    if ord is None: # check the default case first and handle it immediately
        return sqrt(add.reduce((x.conj() * x).ravel().real))

    if nd == 1:
        if ord == Inf:
            return abs(x).max()
        elif ord == -Inf:
            return abs(x).min()
        elif ord == 1:
            return abs(x).sum() # special case for speedup
        elif ord == 2:
            return sqrt(((x.conj()*x).real).sum()) # special case for speedup
        else:
            try:
                ord + 1
            except TypeError:
                raise ValueError, "Invalid norm order for vectors."
            return ((abs(x)**ord).sum())**(1.0/ord)
    elif nd == 2:
        if ord == 2:
            return svd(x, compute_uv=0).max()
        elif ord == -2:
            return svd(x, compute_uv=0).min()
        elif ord == 1:
            return abs(x).sum(axis=0).max()
        elif ord == Inf:
            return abs(x).sum(axis=1).max()
        elif ord == -1:
            return abs(x).sum(axis=0).min()
        elif ord == -Inf:
            return abs(x).sum(axis=1).min()
        elif ord in ['fro','f']:
            return sqrt(add.reduce((x.conj() * x).real.ravel()))
        else:
            raise ValueError, "Invalid norm order for matrices."
    else:
        raise ValueError, "Improper number of dimensions to norm."
开发者ID:AndreI11,项目名称:SatStressGui,代码行数:78,代码来源:linalg.py

示例5: fft

def fft(a, n=None, axis=-1, norm=None):
    """
    Compute the one-dimensional discrete Fourier Transform.

    This function computes the one-dimensional *n*-point discrete Fourier
    Transform (DFT) with the efficient Fast Fourier Transform (FFT)
    algorithm [CT].

    Parameters
    ----------
    a : array_like
        Input array, can be complex.
    n : int, optional
        Length of the transformed axis of the output.
        If `n` is smaller than the length of the input, the input is cropped.
        If it is larger, the input is padded with zeros.  If `n` is not given,
        the length of the input along the axis specified by `axis` is used.
    axis : int, optional
        Axis over which to compute the FFT.  If not given, the last axis is
        used.
    norm : {None, "ortho"}, optional
        .. versionadded:: 1.10.0
        Normalization mode (see `numpy.fft`). Default is None.

    Returns
    -------
    out : complex ndarray
        The truncated or zero-padded input, transformed along the axis
        indicated by `axis`, or the last one if `axis` is not specified.

    Raises
    ------
    IndexError
        if `axes` is larger than the last axis of `a`.

    See Also
    --------
    numpy.fft : for definition of the DFT and conventions used.
    ifft : The inverse of `fft`.
    fft2 : The two-dimensional FFT.
    fftn : The *n*-dimensional FFT.
    rfftn : The *n*-dimensional FFT of real input.
    fftfreq : Frequency bins for given FFT parameters.

    Notes
    -----
    FFT (Fast Fourier Transform) refers to a way the discrete Fourier
    Transform (DFT) can be calculated efficiently, by using symmetries in the
    calculated terms.  The symmetry is highest when `n` is a power of 2, and
    the transform is therefore most efficient for these sizes.

    The DFT is defined, with the conventions used in this implementation, in
    the documentation for the `numpy.fft` module.

    References
    ----------
    .. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the
            machine calculation of complex Fourier series," *Math. Comput.*
            19: 297-301.

    Examples
    --------
    >>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))
    array([ -3.44505240e-16 +1.14383329e-17j,
             8.00000000e+00 -5.71092652e-15j,
             2.33482938e-16 +1.22460635e-16j,
             1.64863782e-15 +1.77635684e-15j,
             9.95839695e-17 +2.33482938e-16j,
             0.00000000e+00 +1.66837030e-15j,
             1.14383329e-17 +1.22460635e-16j,
             -1.64863782e-15 +1.77635684e-15j])

    >>> import matplotlib.pyplot as plt
    >>> t = np.arange(256)
    >>> sp = np.fft.fft(np.sin(t))
    >>> freq = np.fft.fftfreq(t.shape[-1])
    >>> plt.plot(freq, sp.real, freq, sp.imag)
    [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>]
    >>> plt.show()

    In this example, real input has an FFT which is Hermitian, i.e., symmetric
    in the real part and anti-symmetric in the imaginary part, as described in
    the `numpy.fft` documentation.

    """

    a = asarray(a).astype(complex, copy=False)
    if n is None:
        n = a.shape[axis]
    output = _raw_fft(a, n, axis, fftpack.cffti, fftpack.cfftf, _fft_cache)
    if _unitary(norm):
        output *= 1 / sqrt(n)
    return output
开发者ID:dyao-vu,项目名称:meta-core,代码行数:93,代码来源:fftpack.py

示例6: hfft

def hfft(a, n=None, axis=-1, norm=None):
    """
    Compute the FFT of a signal which has Hermitian symmetry (real spectrum).

    Parameters
    ----------
    a : array_like
        The input array.
    n : int, optional
        Length of the transformed axis of the output.
        For `n` output points, ``n//2+1`` input points are necessary.  If the
        input is longer than this, it is cropped.  If it is shorter than this,
        it is padded with zeros.  If `n` is not given, it is determined from
        the length of the input along the axis specified by `axis`.
    axis : int, optional
        Axis over which to compute the FFT. If not given, the last
        axis is used.
    norm : {None, "ortho"}, optional
        .. versionadded:: 1.10.0
        Normalization mode (see `numpy.fft`). Default is None.

    Returns
    -------
    out : ndarray
        The truncated or zero-padded input, transformed along the axis
        indicated by `axis`, or the last one if `axis` is not specified.
        The length of the transformed axis is `n`, or, if `n` is not given,
        ``2*(m-1)`` where ``m`` is the length of the transformed axis of the
        input. To get an odd number of output points, `n` must be specified.

    Raises
    ------
    IndexError
        If `axis` is larger than the last axis of `a`.

    See also
    --------
    rfft : Compute the one-dimensional FFT for real input.
    ihfft : The inverse of `hfft`.

    Notes
    -----
    `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the
    opposite case: here the signal has Hermitian symmetry in the time domain
    and is real in the frequency domain. So here it's `hfft` for which
    you must supply the length of the result if it is to be odd:
    ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy.

    Examples
    --------
    >>> signal = np.array([1, 2, 3, 4, 3, 2])
    >>> np.fft.fft(signal)
    array([ 15.+0.j,  -4.+0.j,   0.+0.j,  -1.-0.j,   0.+0.j,  -4.+0.j])
    >>> np.fft.hfft(signal[:4]) # Input first half of signal
    array([ 15.,  -4.,   0.,  -1.,   0.,  -4.])
    >>> np.fft.hfft(signal, 6)  # Input entire signal and truncate
    array([ 15.,  -4.,   0.,  -1.,   0.,  -4.])


    >>> signal = np.array([[1, 1.j], [-1.j, 2]])
    >>> np.conj(signal.T) - signal   # check Hermitian symmetry
    array([[ 0.-0.j,  0.+0.j],
           [ 0.+0.j,  0.-0.j]])
    >>> freq_spectrum = np.fft.hfft(signal)
    >>> freq_spectrum
    array([[ 1.,  1.],
           [ 2., -2.]])

    """
    # The copy may be required for multithreading.
    a = array(a, copy=True, dtype=complex)
    if n is None:
        n = (a.shape[axis] - 1) * 2
    unitary = _unitary(norm)
    return irfft(conjugate(a), n, axis) * (sqrt(n) if unitary else n)
开发者ID:dyao-vu,项目名称:meta-core,代码行数:75,代码来源:fftpack.py

示例7: irfft

def irfft(a, n=None, axis=-1, norm=None):
    """
    Compute the inverse of the n-point DFT for real input.

    This function computes the inverse of the one-dimensional *n*-point
    discrete Fourier Transform of real input computed by `rfft`.
    In other words, ``irfft(rfft(a), len(a)) == a`` to within numerical
    accuracy. (See Notes below for why ``len(a)`` is necessary here.)

    The input is expected to be in the form returned by `rfft`, i.e. the
    real zero-frequency term followed by the complex positive frequency terms
    in order of increasing frequency.  Since the discrete Fourier Transform of
    real input is Hermitian-symmetric, the negative frequency terms are taken
    to be the complex conjugates of the corresponding positive frequency terms.

    Parameters
    ----------
    a : array_like
        The input array.
    n : int, optional
        Length of the transformed axis of the output.
        For `n` output points, ``n//2+1`` input points are necessary.  If the
        input is longer than this, it is cropped.  If it is shorter than this,
        it is padded with zeros.  If `n` is not given, it is determined from
        the length of the input along the axis specified by `axis`.
    axis : int, optional
        Axis over which to compute the inverse FFT. If not given, the last
        axis is used.
    norm : {None, "ortho"}, optional
        .. versionadded:: 1.10.0
        Normalization mode (see `numpy.fft`). Default is None.

    Returns
    -------
    out : ndarray
        The truncated or zero-padded input, transformed along the axis
        indicated by `axis`, or the last one if `axis` is not specified.
        The length of the transformed axis is `n`, or, if `n` is not given,
        ``2*(m-1)`` where ``m`` is the length of the transformed axis of the
        input. To get an odd number of output points, `n` must be specified.

    Raises
    ------
    IndexError
        If `axis` is larger than the last axis of `a`.

    See Also
    --------
    numpy.fft : For definition of the DFT and conventions used.
    rfft : The one-dimensional FFT of real input, of which `irfft` is inverse.
    fft : The one-dimensional FFT.
    irfft2 : The inverse of the two-dimensional FFT of real input.
    irfftn : The inverse of the *n*-dimensional FFT of real input.

    Notes
    -----
    Returns the real valued `n`-point inverse discrete Fourier transform
    of `a`, where `a` contains the non-negative frequency terms of a
    Hermitian-symmetric sequence. `n` is the length of the result, not the
    input.

    If you specify an `n` such that `a` must be zero-padded or truncated, the
    extra/removed values will be added/removed at high frequencies. One can
    thus resample a series to `m` points via Fourier interpolation by:
    ``a_resamp = irfft(rfft(a), m)``.

    Examples
    --------
    >>> np.fft.ifft([1, -1j, -1, 1j])
    array([ 0.+0.j,  1.+0.j,  0.+0.j,  0.+0.j])
    >>> np.fft.irfft([1, -1j, -1])
    array([ 0.,  1.,  0.,  0.])

    Notice how the last term in the input to the ordinary `ifft` is the
    complex conjugate of the second term, and the output has zero imaginary
    part everywhere.  When calling `irfft`, the negative frequencies are not
    specified, and the output array is purely real.

    """
    # The copy may be required for multithreading.
    a = array(a, copy=True, dtype=complex)
    if n is None:
        n = (a.shape[axis] - 1) * 2
    unitary = _unitary(norm)
    output = _raw_fft(a, n, axis, fftpack.rffti, fftpack.rfftb,
                      _real_fft_cache)
    return output * (1 / (sqrt(n) if unitary else n))
开发者ID:dyao-vu,项目名称:meta-core,代码行数:87,代码来源:fftpack.py

示例8: rfft

def rfft(a, n=None, axis=-1, norm=None):
    """
    Compute the one-dimensional discrete Fourier Transform for real input.

    This function computes the one-dimensional *n*-point discrete Fourier
    Transform (DFT) of a real-valued array by means of an efficient algorithm
    called the Fast Fourier Transform (FFT).

    Parameters
    ----------
    a : array_like
        Input array
    n : int, optional
        Number of points along transformation axis in the input to use.
        If `n` is smaller than the length of the input, the input is cropped.
        If it is larger, the input is padded with zeros. If `n` is not given,
        the length of the input along the axis specified by `axis` is used.
    axis : int, optional
        Axis over which to compute the FFT. If not given, the last axis is
        used.
    norm : {None, "ortho"}, optional
        .. versionadded:: 1.10.0
        Normalization mode (see `numpy.fft`). Default is None.

    Returns
    -------
    out : complex ndarray
        The truncated or zero-padded input, transformed along the axis
        indicated by `axis`, or the last one if `axis` is not specified.
        If `n` is even, the length of the transformed axis is ``(n/2)+1``.
        If `n` is odd, the length is ``(n+1)/2``.

    Raises
    ------
    IndexError
        If `axis` is larger than the last axis of `a`.

    See Also
    --------
    numpy.fft : For definition of the DFT and conventions used.
    irfft : The inverse of `rfft`.
    fft : The one-dimensional FFT of general (complex) input.
    fftn : The *n*-dimensional FFT.
    rfftn : The *n*-dimensional FFT of real input.

    Notes
    -----
    When the DFT is computed for purely real input, the output is
    Hermitian-symmetric, i.e. the negative frequency terms are just the complex
    conjugates of the corresponding positive-frequency terms, and the
    negative-frequency terms are therefore redundant.  This function does not
    compute the negative frequency terms, and the length of the transformed
    axis of the output is therefore ``n//2 + 1``.

    When ``A = rfft(a)`` and fs is the sampling frequency, ``A[0]`` contains
    the zero-frequency term 0*fs, which is real due to Hermitian symmetry.

    If `n` is even, ``A[-1]`` contains the term representing both positive
    and negative Nyquist frequency (+fs/2 and -fs/2), and must also be purely
    real. If `n` is odd, there is no term at fs/2; ``A[-1]`` contains
    the largest positive frequency (fs/2*(n-1)/n), and is complex in the
    general case.

    If the input `a` contains an imaginary part, it is silently discarded.

    Examples
    --------
    >>> np.fft.fft([0, 1, 0, 0])
    array([ 1.+0.j,  0.-1.j, -1.+0.j,  0.+1.j])
    >>> np.fft.rfft([0, 1, 0, 0])
    array([ 1.+0.j,  0.-1.j, -1.+0.j])

    Notice how the final element of the `fft` output is the complex conjugate
    of the second element, for real input. For `rfft`, this symmetry is
    exploited to compute only the non-negative frequency terms.

    """
    # The copy may be required for multithreading.
    a = array(a, copy=True, dtype=float)
    output = _raw_fft(a, n, axis, fftpack.rffti, fftpack.rfftf,
                      _real_fft_cache)
    if _unitary(norm):
        output *= 1 / sqrt(a.shape[axis])
    return output
开发者ID:dyao-vu,项目名称:meta-core,代码行数:84,代码来源:fftpack.py

示例9: ifft

def ifft(a, n=None, axis=-1, norm=None):
    """
    Compute the one-dimensional inverse discrete Fourier Transform.

    This function computes the inverse of the one-dimensional *n*-point
    discrete Fourier transform computed by `fft`.  In other words,
    ``ifft(fft(a)) == a`` to within numerical accuracy.
    For a general description of the algorithm and definitions,
    see `numpy.fft`.

    The input should be ordered in the same way as is returned by `fft`,
    i.e.,

    * ``a[0]`` should contain the zero frequency term,
    * ``a[1:n//2]`` should contain the positive-frequency terms,
    * ``a[n//2 + 1:]`` should contain the negative-frequency terms, in
      increasing order starting from the most negative frequency.

    For an even number of input points, ``A[n//2]`` represents the sum of
    the values at the positive and negative Nyquist frequencies, as the two
    are aliased together. See `numpy.fft` for details.

    Parameters
    ----------
    a : array_like
        Input array, can be complex.
    n : int, optional
        Length of the transformed axis of the output.
        If `n` is smaller than the length of the input, the input is cropped.
        If it is larger, the input is padded with zeros.  If `n` is not given,
        the length of the input along the axis specified by `axis` is used.
        See notes about padding issues.
    axis : int, optional
        Axis over which to compute the inverse DFT.  If not given, the last
        axis is used.
    norm : {None, "ortho"}, optional
        .. versionadded:: 1.10.0
        Normalization mode (see `numpy.fft`). Default is None.

    Returns
    -------
    out : complex ndarray
        The truncated or zero-padded input, transformed along the axis
        indicated by `axis`, or the last one if `axis` is not specified.

    Raises
    ------
    IndexError
        If `axes` is larger than the last axis of `a`.

    See Also
    --------
    numpy.fft : An introduction, with definitions and general explanations.
    fft : The one-dimensional (forward) FFT, of which `ifft` is the inverse
    ifft2 : The two-dimensional inverse FFT.
    ifftn : The n-dimensional inverse FFT.

    Notes
    -----
    If the input parameter `n` is larger than the size of the input, the input
    is padded by appending zeros at the end.  Even though this is the common
    approach, it might lead to surprising results.  If a different padding is
    desired, it must be performed before calling `ifft`.

    Examples
    --------
    >>> np.fft.ifft([0, 4, 0, 0])
    array([ 1.+0.j,  0.+1.j, -1.+0.j,  0.-1.j])

    Create and plot a band-limited signal with random phases:

    >>> import matplotlib.pyplot as plt
    >>> t = np.arange(400)
    >>> n = np.zeros((400,), dtype=complex)
    >>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,)))
    >>> s = np.fft.ifft(n)
    >>> plt.plot(t, s.real, 'b-', t, s.imag, 'r--')
    ...
    >>> plt.legend(('real', 'imaginary'))
    ...
    >>> plt.show()

    """
    # The copy may be required for multithreading.
    a = array(a, copy=True, dtype=complex)
    if n is None:
        n = a.shape[axis]
    unitary = _unitary(norm)
    output = _raw_fft(a, n, axis, fftpack.cffti, fftpack.cfftb, _fft_cache)
    return output * (1 / (sqrt(n) if unitary else n))
开发者ID:dyao-vu,项目名称:meta-core,代码行数:90,代码来源:fftpack.py

示例10: norm

def norm(x, ord=None):
    """
    Norm of a sparse matrix

    This function is able to return one of seven different matrix norms,
    depending on the value of the ``ord`` parameter.

    Parameters
    ----------
    x : a sparse matrix
        Input sparse matrix.
    ord : {non-zero int, inf, -inf, 'fro'}, optional
        Order of the norm (see table under ``Notes``). inf means numpy's
        `inf` object.

    Returns
    -------
    n : float or matrix

    Notes
    -----
    Some of the ord are not implemented because some associated functions like, 
    _multi_svd_norm, are not yet available for sparse matrix. 

    This docstring is modified based on numpy.linalg.norm. 
    https://github.com/numpy/numpy/blob/master/numpy/linalg/linalg.py 

    The following norms can be calculated:

    =====  ============================  
    ord    norm for sparse matrices             
    =====  ============================  
    None   Frobenius norm                
    'fro'  Frobenius norm                
    inf    max(sum(abs(x), axis=1))      
    -inf   min(sum(abs(x), axis=1))      
    0      abs(x).sum(axis=axis)                           
    1      max(sum(abs(x), axis=0))      
    -1     min(sum(abs(x), axis=0))      
    2      Not implemented  
    -2     Not implemented      
    other  Not implemented                               
    =====  ============================  

    The Frobenius norm is given by [1]_:

        :math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}`

    References
    ----------
    .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*,
        Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15

    Examples
    --------
    >>> from scipy.sparse import *
    >>> import numpy as np
    >>> from scipy.sparse.linalg import norm
    >>> a = np.arange(9) - 4
    >>> a
    array([-4, -3, -2, -1, 0, 1, 2, 3, 4])
    >>> b = a.reshape((3, 3))
    >>> b
    array([[-4, -3, -2],
           [-1, 0, 1],
           [ 2, 3, 4]])

    >>> b = csr_matrix(b)
    >>> norm(b)
    7.745966692414834
    >>> norm(b, 'fro')
    7.745966692414834
    >>> norm(b, np.inf)
    9
    >>> norm(b, -np.inf)
    2
    >>> norm(b, 1)
    7
    >>> norm(b, -1)
    6

    """
    if not issparse(x):
        raise TypeError("input is not sparse. use numpy.linalg.norm")

    # Check the default case first and handle it immediately.
    if ord in (None, 'fro', 'f'):
        if np.issubdtype(x.dtype, np.complexfloating):
            sqnorm = abs(x).power(2).sum()
        else:
            sqnorm = x.power(2).sum()
        return sqrt(sqnorm)

    nd = x.ndim
    axis = tuple(range(nd))

    if len(axis) == 2:
        row_axis, col_axis = axis
        if not (-nd <= row_axis < nd and -nd <= col_axis < nd):
            raise ValueError('Invalid axis %r for an array with shape %r' %
#.........这里部分代码省略.........
开发者ID:Acebulf,项目名称:scipy,代码行数:101,代码来源:_norm.py

示例11: norm


#.........这里部分代码省略.........
    >>> from scipy.sparse import *
    >>> import numpy as np
    >>> from scipy.sparse.linalg import norm
    >>> a = np.arange(9) - 4
    >>> a
    array([-4, -3, -2, -1, 0, 1, 2, 3, 4])
    >>> b = a.reshape((3, 3))
    >>> b
    array([[-4, -3, -2],
           [-1, 0, 1],
           [ 2, 3, 4]])
           
    >>> b = csr_matrix(b)
    >>> norm(b)
    7.745966692414834
    >>> norm(b, 'fro')
    7.745966692414834
    >>> norm(b, np.inf)
    9
    >>> norm(b, -np.inf)
    2
    >>> norm(b, 1)
    7
    >>> norm(b, -1)
    6
    
    Using the `axis` argument to compute vector norms:
    
    >>> c = np.array([[ 1, 2, 3],
    ...               [-1, 1, 4]])
    >>> c = csr_matrix(c)
    >>> norm(c, axis=0)
    matrix[[ 1.41421356, 2.23606798, 5. ]]
    >>> norm(c, axis=1)
    matrix[[ 3.74165739, 4.24264069]]
    >>> norm(c, ord=1, axis=1)
    matrix[[6]
           [6]]

"""
    if not issparse(x):
        raise TypeError("input is not sparse. use numpy.linalg.norm")

    # Check the default case first and handle it immediately.
    if ord in [None, 'fro', 'f'] and axis is None:
        if isComplexType(x.dtype.type):
            sqnorm = dot(x.real, x.real) + dot(x.imag, x.imag)
        else:
            sqnorm = x.power(2).sum()
        return sqrt(sqnorm)

    # Normalize the `axis` argument to a tuple.
    nd = x.ndim
    if axis is None:
        axis = tuple(range(nd))
    
    if np.isscalar(axis):
        if ord == Inf:
            return max(abs(x).sum(axis=axis))
        elif ord == -Inf:
            return min(abs(x).sum(axis=axis))
        elif ord == 0:
            # Zero norm
            return (x != 0).sum(axis=axis)
        elif ord == 1:
            # special case for speedup
            return abs(x).sum(axis=axis)
        elif ord == -1:
            return min(abs(x).sum(axis=axis))             
        elif ord is None:            
            return sqrt(x.power(2).sum(axis=axis))        
        else:
            raise NotImplementedError
    elif len(axis) == 2:
        row_axis, col_axis = axis
        if not (-nd <= row_axis < nd and -nd <= col_axis < nd):
            raise ValueError('Invalid axis %r for an array with shape %r' %
                             (axis, x.shape))
        if row_axis % nd == col_axis % nd:
            raise ValueError('Duplicate axes given.')
        if ord == 2:
            raise NotImplementedError
            #return _multi_svd_norm(x, row_axis, col_axis, amax)
        elif ord == -2:
            raise NotImplementedError
            #return _multi_svd_norm(x, row_axis, col_axis, amin)
        elif ord == 1:
            return abs(x).sum(axis=row_axis).max(axis=col_axis)[0,0]
        elif ord == Inf:
            return abs(x).sum(axis=col_axis).max(axis=row_axis)[0,0]
        elif ord == -1:
            return abs(x).sum(axis=row_axis).min(axis=col_axis)[0,0]
        elif ord == -Inf:
            return abs(x).sum(axis=col_axis).min(axis=row_axis)[0,0]
        elif ord in [None, 'fro', 'f']:
            return sqrt(x.power(2).sum(axis=axis))
        else:
            raise ValueError("Invalid norm order for matrices.")
    else:
        raise ValueError("Improper number of dimensions to norm.")
开发者ID:perryism,项目名称:scipy,代码行数:101,代码来源:_norm.py

示例12: norm


#.........这里部分代码省略.........
    >>> from scipy.sparse import *
    >>> import numpy as np
    >>> from scipy.sparse.linalg import norm
    >>> a = np.arange(9) - 4
    >>> a
    array([-4, -3, -2, -1, 0, 1, 2, 3, 4])
    >>> b = a.reshape((3, 3))
    >>> b
    array([[-4, -3, -2],
           [-1, 0, 1],
           [ 2, 3, 4]])

    >>> b = csr_matrix(b)
    >>> norm(b)
    7.745966692414834
    >>> norm(b, 'fro')
    7.745966692414834
    >>> norm(b, np.inf)
    9
    >>> norm(b, -np.inf)
    2
    >>> norm(b, 1)
    7
    >>> norm(b, -1)
    6

    """
    if not issparse(x):
        raise TypeError("input is not sparse. use numpy.linalg.norm")

    # Check the default case first and handle it immediately.
    if axis is None and ord in (None, "fro", "f"):
        return _sparse_frobenius_norm(x)

    # Some norms require functions that are not implemented for all types.
    x = x.tocsr()

    if axis is None:
        axis = (0, 1)
    elif not isinstance(axis, tuple):
        msg = "'axis' must be None, an integer or a tuple of integers"
        try:
            int_axis = int(axis)
        except TypeError:
            raise TypeError(msg)
        if axis != int_axis:
            raise TypeError(msg)
        axis = (int_axis,)

    nd = 2
    if len(axis) == 2:
        row_axis, col_axis = axis
        if not (-nd <= row_axis < nd and -nd <= col_axis < nd):
            raise ValueError("Invalid axis %r for an array with shape %r" % (axis, x.shape))
        if row_axis % nd == col_axis % nd:
            raise ValueError("Duplicate axes given.")
        if ord == 2:
            raise NotImplementedError
            # return _multi_svd_norm(x, row_axis, col_axis, amax)
        elif ord == -2:
            raise NotImplementedError
            # return _multi_svd_norm(x, row_axis, col_axis, amin)
        elif ord == 1:
            return abs(x).sum(axis=row_axis).max(axis=col_axis)[0, 0]
        elif ord == Inf:
            return abs(x).sum(axis=col_axis).max(axis=row_axis)[0, 0]
        elif ord == -1:
            return abs(x).sum(axis=row_axis).min(axis=col_axis)[0, 0]
        elif ord == -Inf:
            return abs(x).sum(axis=col_axis).min(axis=row_axis)[0, 0]
        elif ord in (None, "f", "fro"):
            # The axis order does not matter for this norm.
            return _sparse_frobenius_norm(x)
        else:
            raise ValueError("Invalid norm order for matrices.")
    elif len(axis) == 1:
        a, = axis
        if not (-nd <= a < nd):
            raise ValueError("Invalid axis %r for an array with shape %r" % (axis, x.shape))
        if ord == Inf:
            M = abs(x).max(axis=a)
        elif ord == -Inf:
            M = abs(x).min(axis=a)
        elif ord == 0:
            # Zero norm
            M = (x != 0).sum(axis=a)
        elif ord == 1:
            # special case for speedup
            M = abs(x).sum(axis=a)
        elif ord in (2, None):
            M = sqrt(abs(x).power(2).sum(axis=a))
        else:
            try:
                ord + 1
            except TypeError:
                raise ValueError("Invalid norm order for vectors.")
            M = np.power(abs(x).power(ord).sum(axis=a), 1 / ord)
        return M.A.ravel()
    else:
        raise ValueError("Improper number of dimensions to norm.")
开发者ID:GiladAmar,项目名称:scipy,代码行数:101,代码来源:_norm.py

示例13: _sparse_frobenius_norm

def _sparse_frobenius_norm(x):
    if np.issubdtype(x.dtype, np.complexfloating):
        sqnorm = abs(x).power(2).sum()
    else:
        sqnorm = x.power(2).sum()
    return sqrt(sqnorm)
开发者ID:GiladAmar,项目名称:scipy,代码行数:6,代码来源:_norm.py

示例14: european_call

    X, u = european_call(r, sigma, T, B, m, n, 
                        barrier=options.barrier,
                        method=options.method)
  
  # Print out results at time 0
  print "Stock price x    Option price f(0,x)"
  for i in xrange(0, n):
    print "%10.4f         %10.4f " % (X[i], u[m,i])

  # Generate plots if user requests
  if options.plot or options.save_plot:
    import pylab
    import matplotlib
    from mpl_toolkits.mplot3d import Axes3D

    golden_mean = (sqrt(5.0)-1.0)/2.0
    pylab.rcParams.update( \
      {'backend': 'ps',
       'ps.usedistiller': 'xpdf',
       'axes.labelsize': 10,
       'text.fontsize': 10,
       'xtick.labelsize': 8,
       'ytick.labelsize': 8,
       'figure.figsize': [ 7.0, golden_mean*7.0 ],
       'text.usetex': True })

    fig_color, fig_zero = plot_solution(T, X, u)
  
    # Show figures
    if options.plot:
      pylab.show()
开发者ID:jamie-hong,项目名称:scripts,代码行数:31,代码来源:BS_FDM.py

示例15: __getattr__

        except AttributeError:
            object.__setattr__(self, attr, value)

    # Only called after other approaches fail.
    def __getattr__(self, attr):
        if attr == "array":
            return object.__getattribute__(self, attr)
        return self.array.__getattribute__(attr)


#############################################################
# Test of class container
#############################################################
if __name__ == "__main__":
    temp = reshape(arange(10000), (100, 100))

    ua = container(temp)
    # new object created begin test
    print dir(ua)
    print shape(ua), ua.shape  # I have changed Numeric.py

    ua_small = ua[:3, :5]
    print ua_small
    ua_small[0, 0] = 10  # this did not change ua[0,0], which is not normal behavior
    print ua_small[0, 0], ua[0, 0]
    print sin(ua_small) / 3.0 * 6.0 + sqrt(ua_small ** 2)
    print less(ua_small, 103), type(less(ua_small, 103))
    print type(ua_small * reshape(arange(15), shape(ua_small)))
    print reshape(ua_small, (5, 3))
    print transpose(ua_small)
开发者ID:sowhatwchen,项目名称:numpy,代码行数:30,代码来源:user_array.py


注:本文中的numpy.core.sqrt函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。