当前位置: 首页>>代码示例>>Python>>正文


Python core.conjugate函数代码示例

本文整理汇总了Python中numpy.core.conjugate函数的典型用法代码示例。如果您正苦于以下问题:Python conjugate函数的具体用法?Python conjugate怎么用?Python conjugate使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了conjugate函数的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: hfft

def hfft(a, n=None, axis=-1):
    """
    Compute the fft of a signal which spectrum has Hermitian symmetry.

    Parameters
    ----------
    a : array
        input array
    n : int
        length of the hfft
    axis : int
        axis over which to compute the hfft

    See also
    --------
    rfft
    ihfft

    Notes
    -----
    These are a pair analogous to rfft/irfft, but for the
    opposite case: here the signal is real in the frequency domain and has
    Hermite symmetry in the time domain. So here it's hermite_fft for which
    you must supply the length of the result if it is to be odd.

    ihfft(hfft(a), len(a)) == a
    within numerical accuracy.

    """

    a = asarray(a).astype(complex)
    if n is None:
        n = (shape(a)[axis] - 1) * 2
    return irfft(conjugate(a), n, axis) * n
开发者ID:GunioRobot,项目名称:numpy-refactor,代码行数:34,代码来源:fftpack.py

示例2: ihfft

def ihfft(a, n=None, axis=-1):
    """
    Compute the inverse fft of a signal whose spectrum has Hermitian symmetry.

    Parameters
    ----------
    a : array_like
        Input array.
    n : int, optional
        Length of the ihfft.
    axis : int, optional
        Axis over which to compute the ihfft.

    See also
    --------
    rfft, hfft

    Notes
    -----
    These are a pair analogous to rfft/irfft, but for the
    opposite case: here the signal is real in the frequency domain and has
    Hermite symmetry in the time domain. So here it's hermite_fft for which
    you must supply the length of the result if it is to be odd.

    ihfft(hfft(a), len(a)) == a
    within numerical accuracy.

    """

    a = asarray(a).astype(float)
    if n is None:
        n = shape(a)[axis]
    return conjugate(rfft(a, n, axis))/n
开发者ID:GunioRobot,项目名称:numpy-refactor,代码行数:33,代码来源:fftpack.py

示例3: ihfft

def ihfft(a, n=None, axis=-1, norm=None):
    """
    Compute the inverse FFT of a signal that has Hermitian symmetry.

    Parameters
    ----------
    a : array_like
        Input array.
    n : int, optional
        Length of the inverse FFT, the number of points along
        transformation axis in the input to use.  If `n` is smaller than
        the length of the input, the input is cropped.  If it is larger,
        the input is padded with zeros. If `n` is not given, the length of
        the input along the axis specified by `axis` is used.
    axis : int, optional
        Axis over which to compute the inverse FFT. If not given, the last
        axis is used.
    norm : {None, "ortho"}, optional
        Normalization mode (see `numpy.fft`). Default is None.

        .. versionadded:: 1.10.0

    Returns
    -------
    out : complex ndarray
        The truncated or zero-padded input, transformed along the axis
        indicated by `axis`, or the last one if `axis` is not specified.
        The length of the transformed axis is ``n//2 + 1``.

    See also
    --------
    hfft, irfft

    Notes
    -----
    `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the
    opposite case: here the signal has Hermitian symmetry in the time
    domain and is real in the frequency domain. So here it's `hfft` for
    which you must supply the length of the result if it is to be odd:

    * even: ``ihfft(hfft(a, 2*len(a) - 2) == a``, within roundoff error,
    * odd: ``ihfft(hfft(a, 2*len(a) - 1) == a``, within roundoff error.

    Examples
    --------
    >>> spectrum = np.array([ 15, -4, 0, -1, 0, -4])
    >>> np.fft.ifft(spectrum)
    array([ 1.+0.j,  2.-0.j,  3.+0.j,  4.+0.j,  3.+0.j,  2.-0.j])
    >>> np.fft.ihfft(spectrum)
    array([ 1.-0.j,  2.-0.j,  3.-0.j,  4.-0.j])

    """
    # The copy may be required for multithreading.
    a = array(a, copy=True, dtype=float)
    if n is None:
        n = a.shape[axis]
    unitary = _unitary(norm)
    output = conjugate(rfft(a, n, axis))
    return output * (1 / (sqrt(n) if unitary else n))
开发者ID:bennyrowland,项目名称:numpy,代码行数:59,代码来源:fftpack.py

示例4: ihfft

def ihfft(a, n=None, axis=-1):
    """
    Compute the inverse FFT of a signal which has Hermitian symmetry.

    Parameters
    ----------
    a : array_like
        Input array.
    n : int, optional
        Length of the inverse FFT.
        Number of points along transformation axis in the input to use.
        If `n` is smaller than the length of the input, the input is cropped.
        If it is larger, the input is padded with zeros. If `n` is not given,
        the length of the input along the axis specified by `axis` is used.
    axis : int, optional
        Axis over which to compute the inverse FFT. If not given, the last
        axis is used.

    Returns
    -------
    out : complex ndarray
        The truncated or zero-padded input, transformed along the axis
        indicated by `axis`, or the last one if `axis` is not specified.
        If `n` is even, the length of the transformed axis is ``(n/2)+1``.
        If `n` is odd, the length is ``(n+1)/2``.

    See also
    --------
    hfft, irfft

    Notes
    -----
    `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the
    opposite case: here the signal has Hermitian symmetry in the time domain
    and is real in the frequency domain. So here it's `hfft` for which
    you must supply the length of the result if it is to be odd:
    ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy.

    Examples
    --------
    >>> spectrum = np.array([ 15, -4, 0, -1, 0, -4])
    >>> np.fft.ifft(spectrum)
    array([ 1.+0.j,  2.-0.j,  3.+0.j,  4.+0.j,  3.+0.j,  2.-0.j])
    >>> np.fft.ihfft(spectrum)
    array([ 1.-0.j,  2.-0.j,  3.-0.j,  4.-0.j])

    """

    a = asarray(a).astype(float)
    if n is None:
        n = shape(a)[axis]
    return conjugate(rfft(a, n, axis))/n
开发者ID:hitej,项目名称:meta-core,代码行数:52,代码来源:fftpack.py

示例5: hfft

def hfft(a, n=None, axis=-1):
    """
    Compute the FFT of a signal whose spectrum has Hermitian symmetry.

    Parameters
    ----------
    a : array_like
        The input array.
    n : int, optional
        The length of the FFT.
    axis : int, optional
        The axis over which to compute the FFT, assuming Hermitian symmetry
        of the spectrum. Default is the last axis.

    Returns
    -------
    out : ndarray
        The transformed input.

    See also
    --------
    rfft : Compute the one-dimensional FFT for real input.
    ihfft : The inverse of `hfft`.

    Notes
    -----
    `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the
    opposite case: here the signal is real in the frequency domain and has
    Hermite symmetry in the time domain. So here it's `hfft` for which
    you must supply the length of the result if it is to be odd:
    ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy.

    Examples
    --------
    >>> signal = np.array([[1, 1.j], [-1.j, 2]])
    >>> np.conj(signal.T) - signal   # check Hermitian symmetry
    array([[ 0.-0.j,  0.+0.j],
           [ 0.+0.j,  0.-0.j]])
    >>> freq_spectrum = np.fft.hfft(signal)
    >>> freq_spectrum
    array([[ 1.,  1.],
           [ 2., -2.]])

    """

    a = asarray(a).astype(complex)
    if n is None:
        n = (shape(a)[axis] - 1) * 2
    return irfft(conjugate(a), n, axis) * n
开发者ID:258073127,项目名称:MissionPlanner,代码行数:49,代码来源:fftpack.py

示例6: ihfft

def ihfft(a, n=None, axis=-1):
    """hfft(a, n=None, axis=-1)
    ihfft(a, n=None, axis=-1)

    These are a pair analogous to rfft/irfft, but for the
    opposite case: here the signal is real in the frequency domain and has
    Hermite symmetry in the time domain. So here it's hfft for which
    you must supply the length of the result if it is to be odd.

    ihfft(hfft(a), len(a)) == a
    within numerical accuracy."""

    a = asarray(a).astype(float)
    if n == None:
        n = shape(a)[axis]
    return conjugate(rfft(a, n, axis))/n
开发者ID:ruschecker,项目名称:DrugDiscovery-Home,代码行数:16,代码来源:fftpack.py

示例7: ihfft

def ihfft(a, n=None, axis=-1):
    """
    Compute the inverse FFT of a signal whose spectrum has Hermitian symmetry.

    Parameters
    ----------
    a : array_like
        Input array.
    n : int, optional
        Length of the inverse FFT.
    axis : int, optional
        Axis over which to compute the inverse FFT, assuming Hermitian
        symmetry of the spectrum. Default is the last axis.

    Returns
    -------
    out : ndarray
        The transformed input.

    See also
    --------
    hfft, irfft

    Notes
    -----
    `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the
    opposite case: here the signal is real in the frequency domain and has
    Hermite symmetry in the time domain. So here it's `hfft` for which
    you must supply the length of the result if it is to be odd:
    ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy.

    """

    a = asarray(a).astype(float)
    if n is None:
        n = shape(a)[axis]
    return conjugate(rfft(a, n, axis))/n
开发者ID:258073127,项目名称:MissionPlanner,代码行数:37,代码来源:fftpack.py

示例8: hfft

def hfft(a, n=None, axis=-1):
    """
    Compute the FFT of a signal which has Hermitian symmetry (real spectrum).

    Parameters
    ----------
    a : array_like
        The input array.
    n : int, optional
        Length of the transformed axis of the output.
        For `n` output points, ``n//2+1`` input points are necessary.  If the
        input is longer than this, it is cropped.  If it is shorter than this,
        it is padded with zeros.  If `n` is not given, it is determined from
        the length of the input along the axis specified by `axis`.
    axis : int, optional
        Axis over which to compute the FFT. If not given, the last
        axis is used.

    Returns
    -------
    out : ndarray
        The truncated or zero-padded input, transformed along the axis
        indicated by `axis`, or the last one if `axis` is not specified.
        The length of the transformed axis is `n`, or, if `n` is not given,
        ``2*(m-1)`` where ``m`` is the length of the transformed axis of the
        input. To get an odd number of output points, `n` must be specified.

    Raises
    ------
    IndexError
        If `axis` is larger than the last axis of `a`.

    See also
    --------
    rfft : Compute the one-dimensional FFT for real input.
    ihfft : The inverse of `hfft`.

    Notes
    -----
    `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the
    opposite case: here the signal has Hermitian symmetry in the time domain
    and is real in the frequency domain. So here it's `hfft` for which
    you must supply the length of the result if it is to be odd:
    ``ihfft(hfft(a), len(a)) == a``, within numerical accuracy.

    Examples
    --------
    >>> signal = np.array([1, 2, 3, 4, 3, 2])
    >>> np.fft.fft(signal)
    array([ 15.+0.j,  -4.+0.j,   0.+0.j,  -1.-0.j,   0.+0.j,  -4.+0.j])
    >>> np.fft.hfft(signal[:4]) # Input first half of signal
    array([ 15.,  -4.,   0.,  -1.,   0.,  -4.])
    >>> np.fft.hfft(signal, 6)  # Input entire signal and truncate
    array([ 15.,  -4.,   0.,  -1.,   0.,  -4.])


    >>> signal = np.array([[1, 1.j], [-1.j, 2]])
    >>> np.conj(signal.T) - signal   # check Hermitian symmetry
    array([[ 0.-0.j,  0.+0.j],
           [ 0.+0.j,  0.-0.j]])
    >>> freq_spectrum = np.fft.hfft(signal)
    >>> freq_spectrum
    array([[ 1.,  1.],
           [ 2., -2.]])

    """

    a = asarray(a).astype(complex)
    if n is None:
        n = (shape(a)[axis] - 1) * 2
    return irfft(conjugate(a), n, axis) * n
开发者ID:hitej,项目名称:meta-core,代码行数:71,代码来源:fftpack.py

示例9: hfft

def hfft(a, n=None, axis=-1, norm=None):
    """
    Compute the FFT of a signal that has Hermitian symmetry, i.e., a real
    spectrum.

    Parameters
    ----------
    a : array_like
        The input array.
    n : int, optional
        Length of the transformed axis of the output. For `n` output
        points, ``n//2 + 1`` input points are necessary.  If the input is
        longer than this, it is cropped.  If it is shorter than this, it is
        padded with zeros.  If `n` is not given, it is determined from the
        length of the input along the axis specified by `axis`.
    axis : int, optional
        Axis over which to compute the FFT. If not given, the last
        axis is used.
    norm : {None, "ortho"}, optional
        Normalization mode (see `numpy.fft`). Default is None.

        .. versionadded:: 1.10.0

    Returns
    -------
    out : ndarray
        The truncated or zero-padded input, transformed along the axis
        indicated by `axis`, or the last one if `axis` is not specified.
        The length of the transformed axis is `n`, or, if `n` is not given,
        ``2*m - 2`` where ``m`` is the length of the transformed axis of
        the input. To get an odd number of output points, `n` must be
        specified, for instance as ``2*m - 1`` in the typical case,

    Raises
    ------
    IndexError
        If `axis` is larger than the last axis of `a`.

    See also
    --------
    rfft : Compute the one-dimensional FFT for real input.
    ihfft : The inverse of `hfft`.

    Notes
    -----
    `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the
    opposite case: here the signal has Hermitian symmetry in the time
    domain and is real in the frequency domain. So here it's `hfft` for
    which you must supply the length of the result if it is to be odd.

    * even: ``ihfft(hfft(a, 2*len(a) - 2) == a``, within roundoff error,
    * odd: ``ihfft(hfft(a, 2*len(a) - 1) == a``, within roundoff error.

    Examples
    --------
    >>> signal = np.array([1, 2, 3, 4, 3, 2])
    >>> np.fft.fft(signal)
    array([ 15.+0.j,  -4.+0.j,   0.+0.j,  -1.-0.j,   0.+0.j,  -4.+0.j])
    >>> np.fft.hfft(signal[:4]) # Input first half of signal
    array([ 15.,  -4.,   0.,  -1.,   0.,  -4.])
    >>> np.fft.hfft(signal, 6)  # Input entire signal and truncate
    array([ 15.,  -4.,   0.,  -1.,   0.,  -4.])


    >>> signal = np.array([[1, 1.j], [-1.j, 2]])
    >>> np.conj(signal.T) - signal   # check Hermitian symmetry
    array([[ 0.-0.j,  0.+0.j],
           [ 0.+0.j,  0.-0.j]])
    >>> freq_spectrum = np.fft.hfft(signal)
    >>> freq_spectrum
    array([[ 1.,  1.],
           [ 2., -2.]])

    """
    # The copy may be required for multithreading.
    a = array(a, copy=True, dtype=complex)
    if n is None:
        n = (a.shape[axis] - 1) * 2
    unitary = _unitary(norm)
    return irfft(conjugate(a), n, axis) * (sqrt(n) if unitary else n)
开发者ID:bennyrowland,项目名称:numpy,代码行数:80,代码来源:fftpack.py


注:本文中的numpy.core.conjugate函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。