本文整理汇总了Python中numpy.void函数的典型用法代码示例。如果您正苦于以下问题:Python void函数的具体用法?Python void怎么用?Python void使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了void函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: check_numpy_scalar_argument_return_void
def check_numpy_scalar_argument_return_void(self):
f = PyCFunction('foo')
f += Variable('a1', numpy.void, 'in, out')
f += Variable('a2', numpy.void, 'in, out')
foo = f.build()
args = ('he', 4)
results = (numpy.void('he'), numpy.void(4))
assert_equal(foo(*args), results)
示例2: test_meta_nonempty
def test_meta_nonempty():
df1 = pd.DataFrame({'A': pd.Categorical(['Alice', 'Bob', 'Carol']),
'B': list('abc'),
'C': 'bar',
'D': np.float32(1),
'E': np.int32(1),
'F': pd.Timestamp('2016-01-01'),
'G': pd.date_range('2016-01-01', periods=3,
tz='America/New_York'),
'H': pd.Timedelta('1 hours', 'ms'),
'I': np.void(b' '),
'J': pd.Categorical([UNKNOWN_CATEGORIES] * 3)},
columns=list('DCBAHGFEIJ'))
df2 = df1.iloc[0:0]
df3 = meta_nonempty(df2)
assert (df3.dtypes == df2.dtypes).all()
assert df3['A'][0] == 'Alice'
assert df3['B'][0] == 'foo'
assert df3['C'][0] == 'foo'
assert df3['D'][0] == np.float32(1)
assert df3['D'][0].dtype == 'f4'
assert df3['E'][0] == np.int32(1)
assert df3['E'][0].dtype == 'i4'
assert df3['F'][0] == pd.Timestamp('1970-01-01 00:00:00')
assert df3['G'][0] == pd.Timestamp('1970-01-01 00:00:00',
tz='America/New_York')
assert df3['H'][0] == pd.Timedelta('1', 'ms')
assert df3['I'][0] == 'foo'
assert df3['J'][0] == UNKNOWN_CATEGORIES
s = meta_nonempty(df2['A'])
assert s.dtype == df2['A'].dtype
assert (df3['A'] == s).all()
示例3: _convert_value
def _convert_value(self, value):
"""Convert a string into a numpy object (scalar or array).
The value is most of the time a string, but it can be python object
in case if TIFF decoder for example.
"""
if isinstance(value, list):
# convert to a numpy array
return numpy.array(value)
if isinstance(value, dict):
# convert to a numpy associative array
key_dtype = numpy.min_scalar_type(list(value.keys()))
value_dtype = numpy.min_scalar_type(list(value.values()))
associative_type = [('key', key_dtype), ('value', value_dtype)]
assert key_dtype.kind != "O" and value_dtype.kind != "O"
return numpy.array(list(value.items()), dtype=associative_type)
if isinstance(value, numbers.Number):
dtype = numpy.min_scalar_type(value)
assert dtype.kind != "O"
return dtype.type(value)
if isinstance(value, six.binary_type):
try:
value = value.decode('utf-8')
except UnicodeDecodeError:
return numpy.void(value)
if " " in value:
result = self._convert_list(value)
else:
result = self._convert_scalar_value(value)
return result
示例4: test_meta_nonempty
def test_meta_nonempty():
df1 = pd.DataFrame({'A': pd.Categorical(['Alice', 'Bob', 'Carol']),
'B': list('abc'),
'C': 'bar',
'D': 3.0,
'E': pd.Timestamp('2016-01-01'),
'F': pd.date_range('2016-01-01', periods=3,
tz='America/New_York'),
'G': pd.Timedelta('1 hours'),
'H': np.void(b' ')},
columns=list('DCBAHGFE'))
df2 = df1.iloc[0:0]
df3 = meta_nonempty(df2)
assert (df3.dtypes == df2.dtypes).all()
assert df3['A'][0] == 'Alice'
assert df3['B'][0] == 'foo'
assert df3['C'][0] == 'foo'
assert df3['D'][0] == 1.0
assert df3['E'][0] == pd.Timestamp('1970-01-01 00:00:00')
assert df3['F'][0] == pd.Timestamp('1970-01-01 00:00:00',
tz='America/New_York')
assert df3['G'][0] == pd.Timedelta('1 days')
assert df3['H'][0] == 'foo'
s = meta_nonempty(df2['A'])
assert s.dtype == df2['A'].dtype
assert (df3['A'] == s).all()
示例5: _saveValue
def _saveValue(self, group, name, value):
# we pickle to a string and convert to numpy.void,
# because HDF5 has some limitations as to which strings it can serialize
# (see http://docs.h5py.org/en/latest/strings.html)
pickled = numpy.void(pickle.dumps(value, 0))
dset = group.create_dataset(name, data=pickled)
dset.attrs['version'] = self._version
self._failed_to_deserialize = False
示例6: store
def store(self, k, v):
logging.info("{} storing {}".format(self.TAG, k))
v_ = np.void(zlib.compress(cPickle.dumps(v, protocol=cPickle.HIGHEST_PROTOCOL)))
if k in self.db:
logging.error("{} Overwriting group {}!".format(self.TAG, k))
del self.db[k]
self.db[k] = [v_]
示例7: serialize_hdf5
def serialize_hdf5(self, h5py_group):
logger.debug("Serializing")
h5py_group[self.HDF5_GROUP_FILENAME] = self._filename
h5py_group["pickled_type"] = pickle.dumps(type(self), 0)
# HACK: can this be done more elegantly?
with tempfile.TemporaryFile() as f:
self._tiktorch_net.serialize(f)
f.seek(0)
h5py_group["classifier"] = numpy.void(f.read())
示例8: VideoToStringArray
def VideoToStringArray(video_array):
"""Converts a NCHW video array to a N length string array with
JPEG encoded strings, to be able to store as h5 files.
"""
nframes = video_array.shape[0]
frames = np.split(np.transpose(video_array, (0, 2, 3, 1)), nframes, axis=0)
# np.void from http://docs.h5py.org/en/latest/strings.html
frames = np.array([np.void(cv2.imencode(
'.jpg', frame[0])[1].tostring()) for frame in frames])
return frames
示例9: save_dataset_as_hdf5
def save_dataset_as_hdf5(dataset, filename=None, variant=None):
"""
Method to write simple datasets to an HDF5 file.
:param dataset: The dataset to be stored as a dictionary of tuples.
Each entry is one usage and contains (input_data, targets)
:type dataset: dict[unicode, (numpy.ndarray, pylstm.targets.Targets)]
:param filename: Filename/path of the file that should be written.
Will overwrite if it already exists. Can be None if variant is given.
:type filename: unicode
:param variant: hdf5 group object the dataset will be saved to instead of
writing it to a new file. Either this or filename has to be set.
:rtype: None
"""
hdffile = None
if variant is None:
assert filename is not None
import h5py
hdffile = h5py.File(filename, "w")
variant = hdffile
if 'description' in dataset:
variant.attrs['description'] = dataset['description']
for usage in ['training', 'validation', 'test']:
if usage not in dataset:
continue
input_data, targets = dataset[usage]
grp = variant.create_group(usage)
grp.create_dataset('input_data', data=input_data,
chunks=get_chunksize(input_data),
compression="gzip")
if targets.is_labeling():
targets_encoded = np.void(cPickle.dumps(targets.data))
targets_ds = grp.create_dataset('targets',
data=targets_encoded,
dtype=targets_encoded.dtype)
else:
targets_ds = grp.create_dataset(
'targets',
data=targets.data,
chunks=get_chunksize(targets.data),
compression="gzip"
)
targets_ds.attrs.create('targets_type', str(targets.targets_type[0]))
targets_ds.attrs.create('binarize_to', targets.binarize_to or 0)
if targets.mask is not None:
grp.create_dataset('mask', data=targets.mask, dtype='u1')
if hdffile is not None:
hdffile.close()
示例10: write_hdf5
def write_hdf5(self, filename, dataset_name=None, info=None):
r"""Writes ImageArray to hdf5 file.
Parameters
----------
filename: string
The filename to create and write a dataset to
dataset_name: string
The name of the dataset to create in the file.
info: dictionary
A dictionary of supplementary info to write to append as attributes
to the dataset.
Examples
--------
>>> a = YTArray([1,2,3], 'cm')
>>> myinfo = {'field':'dinosaurs', 'type':'field_data'}
>>> a.write_hdf5('test_array_data.h5', dataset_name='dinosaurs',
... info=myinfo)
"""
import h5py
from yt.extern.six.moves import cPickle as pickle
if info is None:
info = {}
info["units"] = str(self.units)
info["unit_registry"] = np.void(pickle.dumps(self.units.registry.lut))
if dataset_name is None:
dataset_name = "array_data"
f = h5py.File(filename)
if dataset_name in f.keys():
d = f[dataset_name]
# Overwrite without deleting if we can get away with it.
if d.shape == self.shape and d.dtype == self.dtype:
d[:] = self
for k in d.attrs.keys():
del d.attrs[k]
else:
del f[dataset_name]
d = f.create_dataset(dataset_name, data=self)
else:
d = f.create_dataset(dataset_name, data=self)
for k, v in info.items():
d.attrs[k] = v
f.close()
示例11: metadata
def metadata(self, value):
try:
del self.metadata
except KeyError:
pass
dump = pickle.dumps(value)
for i, start in enumerate(range(0, len(dump), MAX_ATTRIBUTE_SIZE)):
self._group.attrs['_metadata{}'.format(i)] = np.void(
dump[start : start + MAX_ATTRIBUTE_SIZE])
self._group.attrs['_metadata_num'] = i + 1
示例12: write_to
def write_to(self, group, append=False):
"""Writes the properties to a `group`, or append it"""
data = self.data
if append is True:
try:
# concatenate original and new properties in a single list
original = read_properties(group)
data = original + data
except EOFError:
pass # no former data to append on
# h5py does not support embedded NULLs in strings ('\x00')
data = pickle.dumps(data).replace(b'\x00', b'__NULL__')
group['properties'][...] = np.void(data)
示例13: save
def save(self, hdf5_handle):
g = hdf5_handle
# Class settings
g.attrs.update(self.settings)
# Class attributes
h = g.create_group("class")
h.attrs["label"] = self.label
if self.settings["store_cxx_serial"]:
if self.verbose: self.log << "[h5] Writing cxx serial" << self.log.endl
# Prune pid data if not required to compute gradients
prune_pid_data = False if self.options['spectrum.gradients'] else True
cxx_serial = self.spectrum.saves(prune_pid_data)
h = g.create_dataset("cxx_serial", data=np.void(cxx_serial))
if self.settings["store_cmap"]:
if self.verbose: self.log << "[h5] Writing coefficient map" << self.log.endl
h = g.create_group("cmap")
for idx, cmap in enumerate(self.cmap):
hh = h.create_group('%d' % idx)
for key in cmap:
hh.create_dataset(key, data=cmap[key], compression='gzip')
if self.settings["store_gcmap"]:
if self.verbose: self.log << "[h5] Writing global coefficient map" << self.log.endl
h = g.create_group("gcmap")
for idx, gcmap in enumerate(self.gcmap):
hh = h.create_group('%d' % idx)
for key in gcmap:
hh.create_dataset(key, data=gcmap[key], compression='gzip')
if self.settings["store_sdmap"]:
if self.verbose: self.log << "[h5] Writing descriptor map" << self.log.endl
h = g.create_group('sdmap')
for idx, sdmap in enumerate(self.sdmap):
hh = h.create_group('%d' % idx)
for key in sdmap:
hh.create_dataset(key, data=sdmap[key], compression='gzip')
if self.settings["store_gsdmap"]:
if self.verbose: self.log << "[h5] Writing global descriptor map" << self.log.endl
h = g.create_group('gsdmap')
for idx, gsdmap in enumerate(self.gsdmap):
hh = h.create_group('%d' % idx)
for key in gsdmap:
hh.create_dataset(key, data=gsdmap[key], compression='gzip')
if self.settings["store_sd"]:
if self.verbose: self.log << "[h5] Writing descriptor matrix" << self.log.endl
g.create_dataset('sd', data=self.sd, compression='gzip')
if self.settings["store_gsd"]:
if self.verbose: self.log << "[h5] Writing global descriptor matrix" << self.log.endl
g.create_dataset('gsd', data=self.gsd, compression='gzip')
return self
示例14: _create_data
def _create_data(self):
"""Initialize hold data by merging all headers of each frames.
"""
headers = []
types = set([])
for fabio_frame in self.__fabio_reader.iter_frames():
header = fabio_frame.header
data = []
for key, value in header.items():
data.append("%s: %s" % (str(key), str(value)))
data = "\n".join(data)
try:
line = data.encode("ascii")
types.add(numpy.string_)
except UnicodeEncodeError:
try:
line = data.encode("utf-8")
types.add(numpy.unicode_)
except UnicodeEncodeError:
# Fallback in void
line = numpy.void(data)
types.add(numpy.void)
headers.append(line)
if numpy.void in types:
dtype = numpy.void
elif numpy.unicode_ in types:
dtype = numpy.unicode_
else:
dtype = numpy.string_
if dtype == numpy.unicode_ and h5py is not None:
# h5py only support vlen unicode
dtype = h5py.special_dtype(vlen=six.text_type)
return numpy.array(headers, dtype=dtype)
示例15: test_void_scalar_recursion
def test_void_scalar_recursion(self):
# gh-9345
repr(np.void(b'test')) # RecursionError ?