本文整理汇总了Python中numpy.true_divide函数的典型用法代码示例。如果您正苦于以下问题:Python true_divide函数的具体用法?Python true_divide怎么用?Python true_divide使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了true_divide函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: theta
def theta(self, S, t, vol, r):
if t > self.T:
return np.zeros(len(S))
if self.op_type == 'c':
return np.subtract(
np.true_divide(
np.multiply(-vol,
np.multiply(S, norm.pdf(self.d1(S, t, vol, r)))),
np.multiply(2,
np.power(
np.subtract(self.T, t), .5))),
np.multiply(r,
np.multiply(self.K,
np.multiply(
np.exp(
np.multiply(-r,
np.subtract(self.T, t))),
norm.cdf(self.d2(S, t, vol, r))))))
else:
return np.add(
np.true_divide(
np.multiply(-vol,
np.multiply(S, norm.pdf(self.d1(S, t, vol, r)))),
np.multiply(2,
np.power(
np.subtract(self.T, t), .5))),
np.multiply(r,
np.multiply(self.K,
np.multiply(
np.exp(
np.multiply(-r,
np.subtract(self.T, t))),
norm.cdf(
np.multiply(-1, self.d2(S, t, vol, r)))))))
示例2: _hist_bin_doane
def _hist_bin_doane(x):
"""
Doane's histogram bin estimator.
Improved version of Sturges' formula which works better for
non-normal data. See
stats.stackexchange.com/questions/55134/doanes-formula-for-histogram-binning
Parameters
----------
x : array_like
Input data that is to be histogrammed, trimmed to range. May not
be empty.
Returns
-------
h : An estimate of the optimal bin width for the given data.
"""
if x.size > 2:
sg1 = np.sqrt(6.0 * (x.size - 2) / ((x.size + 1.0) * (x.size + 3)))
sigma = np.std(x)
if sigma > 0.0:
# These three operations add up to
# g1 = np.mean(((x - np.mean(x)) / sigma)**3)
# but use only one temp array instead of three
temp = x - np.mean(x)
np.true_divide(temp, sigma, temp)
np.power(temp, 3, temp)
g1 = np.mean(temp)
return x.ptp() / (1.0 + np.log2(x.size) +
np.log2(1.0 + np.absolute(g1) / sg1))
return 0.0
示例3: compute_IICR_n_islands
def compute_IICR_n_islands(n, M, t, s=True):
# This method evaluates the lambda function in a vector
# of time values t.
# If 's' is True we are in the case when two individuals where
# sampled from the same island. If 's' is false, then the two
# individuals where sampled from different islands.
# Computing constants
gamma = np.true_divide(M, n - 1)
delta = (1 + n * gamma) ** 2 - 4 * gamma
alpha = 0.5 * (1 + n * gamma + np.sqrt(delta))
beta = 0.5 * (1 + n * gamma - np.sqrt(delta))
# Now we evaluate
x_vector = t
if s:
numerator = (1 - beta) * np.exp(-alpha * x_vector) + (alpha - 1) * np.exp(-beta * x_vector)
denominator = (alpha - gamma) * np.exp(-alpha * x_vector) + (gamma - beta) * np.exp(-beta * x_vector)
else:
numerator = beta * np.exp(-alpha * (x_vector)) - alpha * np.exp(-beta * (x_vector))
denominator = gamma * (np.exp(-alpha * (x_vector)) - np.exp(-beta * (x_vector)))
lambda_t = np.true_divide(numerator, denominator)
return lambda_t
示例4: this_create_total_dict
def this_create_total_dict():
input_dir='/tmp/fvs_fun/fv_deep_funneled/'
fv_dict = dict()
count=0;
for name in os.listdir(input_dir):
count=count+1
input_file = os.path.join(input_dir,name)
with open(input_file) as f:
#w, h = [float(x) for x in f.readline().split()]
#array = [[float(x) for x in line.split()] for line in f]
s= numpy.genfromtxt(input_file, delimiter=',')
word1 = "".join(re.findall("[a-zA-Z]+", name))
word = word1[:-3]
if word in fv_dict:
fv_dict[word].append([numpy.true_divide(s,numpy.linalg.norm(s,ord=2))])
#fv_dict[word]= numpy.concatenate( (fv_dict[word], numpy.true_divide(s,numpy.linalg.norm(s,ord=2))) ,axis=1)
else:
fv_dict[word]=[numpy.true_divide(s,numpy.linalg.norm(s,ord=2))]
print count
if count>10:
break;
return fv_dict
示例5: __call__
def __call__(self, values, clip=True, out=None):
values = _prepare(values, clip=clip, out=out)
np.multiply(values, np.log(self.exp + 1.), out=values)
np.exp(values, out=values)
np.subtract(values, 1., out=values)
np.true_divide(values, self.exp, out=values)
return values
示例6: thresholdColor
def thresholdColor(img):
NTIME = time.time()
channels = cv2.split(img)
red = channels[2].astype(np.uint8)
green = channels[1].astype(np.uint8)
blue = channels[0].astype(np.uint8)
r_g = np.true_divide(red,green)
r_b = np.true_divide(red,blue)
g_r = np.true_divide(green,red)
g_b = np.true_divide(green,blue)
combs = []
for col in colors:
(dom,minv,first,second)=color_dims[col]
if dom == "r":
comb = ((red > minv) & (r_g > first) & (r_b > second)).astype(np.uint8)
elif dom == "g":
comb = ((green > minv) & (g_r > first) & (g_b > second)).astype(np.uint8)
combs.append(comb)
BTIME = time.time()
rospy.loginfo("IN")
rospy.loginfo(BTIME-NTIME)
return combs
示例7: __call__
def __call__(self, values, clip=None):
if clip is None:
clip = self.clip
if isinstance(values, ma.MaskedArray):
if clip:
mask = False
else:
mask = values.mask
values = values.filled(self.vmax)
else:
mask = False
# Make sure scalars get broadcast to 1-d
if np.isscalar(values):
values = np.array([values], dtype=float)
else:
# copy because of in-place operations after
values = np.array(values, copy=True, dtype=float)
# Normalize based on vmin and vmax
np.subtract(values, self.vmin, out=values)
np.true_divide(values, self.vmax - self.vmin, out=values)
# Clip to the 0 to 1 range
if self.clip:
values = np.clip(values, 0., 1., out=values)
# Stretch values
values = self.stretch(values, out=values, clip=False)
# Convert to masked array for matplotlib
return ma.array(values, mask=mask)
示例8: this_create_total_dict
def this_create_total_dict(fromPercent, toPercent):
input_dir="/tmp/fvs_fun/fv_deep_funneled/"
total = len(os.listdir(input_dir))
start_index = int(fromPercent*total)
end_index = int(toPercent*total)
fv_dict = dict()
count=0;
for name in os.listdir(input_dir)[start_index:end_index]:
count=count+1
input_file = os.path.join(input_dir,name)
with open(input_file) as f:
#w, h = [float(x) for x in f.readline().split()]
#array = [[float(x) for x in line.split()] for line in f]
s= numpy.genfromtxt(input_file, delimiter=',')
word1 = "".join(re.findall("[a-zA-Z]+", name))
word = word1[:-3]
if word in fv_dict:
fv_dict[word].append([numpy.true_divide(s,numpy.linalg.norm(s,ord=2))])
#fv_dict[word]= numpy.concatenate( (fv_dict[word], numpy.true_divide(s,numpy.linalg.norm(s,ord=2))) ,axis=1)
else:
fv_dict[word]=[numpy.true_divide(s,numpy.linalg.norm(s,ord=2))]
print count
#if len(fv_dict.keys())>50:
# break;
return fv_dict
示例9: general_work
def general_work(self, input_items, output_items):
in0 = input_items[0]
flags = input_items[1]
out = output_items[0]
if len(in0) !=len(flags):
print "TX:input length buffer DOESN'T EQUAL"
len_in = min(len(in0), len(flags))
if self.state == 0:
for i in range(len_in):
if flags[i] == 1:
print "TX: FLAG FOUND!!!", i
self.state =1
self.consume(0,i+1)
self.consume(1,i+1)
return 0
if self.state == 1:
Y = in0[-self.pilot_length:0]
corr = np.true_divide(np.dot(Y.transpose(),self.pilot_seq.conj()),self.pilot_length)
A = np.dot(corr,corr.transpose().conj())
B = np.true_divide(np.dot(Y.transpose(),Y.conj()),self.pilot_length)
Omega_hat = B-A
Omega = Omega_hat - self.NHAT + np.identity(self.nt)
Sigma = np.dot(np.linalg.pinv(Omega)-np.linalg.pinv(B),self.weight) #nt x nt
#=====================debugging msg========================
print "Pilot detected! TX sync Sigma ="
print Sigma
out[:]=Sigma.reshape(self.nt*self.nt)
self.consume(0,len_in)
self.consume(1,len_in)
return 1
示例10: compare_cdf_g
def compare_cdf_g(model, n_obs=10000, case='T2s',
t_vector=np.arange(0, 100, 0.1), path2ms='./'):
# Do a graphical comparison by plotting the theoretical cdf and the
# empirical pdf
T_list_ms = np.true_divide(model.T_list,2)
M_list = model.M_list
if case == 'T2s':
cmd = create_ms_command_T2(n_obs, model.n, T_list_ms, M_list, 'same')
theor_cdf = model.cdf_T2s
elif case == 'T2d':
cmd = create_ms_command_T2(n_obs, model.n, T_list_ms, M_list, 'disctint')
theor_cdf = model.cdf_T2d
else:
return 1
obs = simulate_T2_ms(cmd, path2ms)
obs = np.array(obs) * 2
delta = t_vector[-1] - t_vector[-2]
bins = t_vector
f_obs = np.histogram(obs, bins=bins)[0]
cum_f_obs = [0] + list(f_obs.cumsum())
F_obs = np.true_divide(np.array(cum_f_obs), n_obs)
F_theory = [theor_cdf(t) for t in bins]
# Now we plot
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(bins, F_obs, '-r', label = 'Empirical cdf')
ax.plot(bins, F_theory, '-b', label = 'Theoretical cdf')
plt.legend()
plt.show()
示例11: __init__
def __init__(self, n=10, M=0.1):
T2_StSI.__init__(self, n, M)
[A, B, a, alpha, beta, E, AplusB, AminusB] = \
T2_StSI.compute_constants(self, n, M)
[self.a, self.alpha, self.beta] = [a, alpha, beta]
self.gamma = np.true_divide(M, n-1)
self.c = np.true_divide(self.gamma, beta-alpha)
示例12: normalize
def normalize(ndarray_list):
""" Normalize each ndarray and scale all
> All ndarray must have same dimensions!
Parameters :
- ndarray_list : ndarray list of images
Returns :
- ndarray : ndarray in wich each pixel match to pixels normalize
"""
liste = []
lenght = len(ndarray_list)
print "Taille de la liste d'image à traiter : "+ str(lenght)
# 1) Normalize each flat field, i.e. divide it by its mean entry value
for i in range(lenght):
print "Normalize 1/2 : " + str(i+1) + "/" + str(lenght)
mean = np.mean(ndarray_list[i]) # Find the mean of the ndarray
print "Moyenne de la " + str(i+1) + " image : " + str(mean)
liste.append(mean)
ndarray_list[i] = np.true_divide(ndarray_list[i], mean) # Divide ndarray by its mean, normalizing it
# 2) Scale all of the fields’ means so that their individual averages are equal to one another
meanofmean = sum(liste) / len(liste) # Find the mean of the total set of ndarray_list
print "Moyenne global de toutes les images : " + str(meanofmean)
for i in range(lenght):
print "Normalize 2/2 with : "+ str(i+1) + "/" + str(lenght)
ndarray_list[i] = np.multiply(ndarray_list[i], np.true_divide(meanofmean, np.mean(ndarray_list[i]))) # Divide
return ndarray_list
示例13: sigmoid_inverse
def sigmoid_inverse(z):
# z = 0.998*z + 0.001
assert(np.max(z) <= 1.0 and np.min(z) >= 0.0)
z = 0.998*z + 0.001
return np.log(np.true_divide(
1.0, (np.true_divide(1.0, z) - 1)
))
示例14: ArtistsRate
def ArtistsRate(JCR, period, istest=False):
global constants
cols = ["id", "reviews_avgnote", "reviews_all", "playlisters_logged", "starers_logged", "listeners_logged", "downloaders_logged"]
if period == 'total': cols += ['days_since_publication']
COLUMNS = JCR.getColumns(cols)
#REVIEWS RATE
reviews_reduceunder = constants[period]['reviews_reduceunder']
#for album in JCR.iterAlbumJoinArtist()
#bestreviewed
COLUMNS['reviews_rate'] = computeBayesAvg(COLUMNS["reviews_avgnote"], COLUMNS['reviews_all'], constants[period]['reviews_bayes_const'], reviews_reduceunder)
#LIKESRATE
likes = COLUMNS["playlisters_logged"] + 1.5*COLUMNS["starers_logged"] #*1.5 to bring the 2 values-set to about the same level avg level
ratios = np.true_divide(likes, COLUMNS["listeners_logged"]+1)
likes_reduceunder = constants[period]['likes_reduceunder']
COLUMNS['likes_rate'] = computeBayesAvg(ratios, COLUMNS["listeners_logged"]+1, constants[period]['likes_bayes_const'], likes_reduceunder)
#FINAL RATE COMBINING BY RANK RATE
if period=='total':
days = 1 + nomramlizeTo0_1(np.log2( COLUMNS['days_since_publication'] + 2 ))
downloaders = np.true_divide(COLUMNS['downloaders_logged'], days)
else: downloaders = COLUMNS['downloaders_logged']
COLUMNS['rate'] = getRanks(COLUMNS['likes_rate']) + 1.5*getRanks(COLUMNS['reviews_rate']) + getRanks(COLUMNS['downloaders_logged'])
if istest:
return COLUMNS
else:
return {'id': COLUMNS['id'], 'rate': COLUMNS['rate']}
示例15: persp
def persp(winsize, nf, dim=3):
"""
Assumptions: 2D: Device coordinates (eye coordinates) have
(0,0) at the top left corner. z is just normalized.
This is because in 2D I like to pretend the screen is a big bitmap.
3D: I am not going to bother explaining what is going on here.
It is relatively simple but this was incredibly painful to implement
on top of poorly written code.
It is dull mathematics. One thing to note: If you are using your own
geometry shader you MUST do some sort of clipping plane check
on the output, because if you don't you will get weird artifacts around the near
plane because of the asymptotic behavior.
:param winsize: width, height
:return: device coordinates normalized to the x,y axis
"""
w = np.true_divide(2, winsize[0])
h = np.true_divide(2, winsize[1])
n, f = nf
if dim == 3:
return np.array([[w*n, 0, 0, 0],
[0, h*n, 0, 0],
[0, 0, -(n+f)/float(f-n), -2*n*f/float(f-n)],
[0, 0, -1, 0]], dtype="float32")
else:
return [[2*w, 0, -1],
[0, -2*h, 1],
[0, 0, 1]]