当前位置: 首页>>代码示例>>Python>>正文


Python numpy.triu_indices_from函数代码示例

本文整理汇总了Python中numpy.triu_indices_from函数的典型用法代码示例。如果您正苦于以下问题:Python triu_indices_from函数的具体用法?Python triu_indices_from怎么用?Python triu_indices_from使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了triu_indices_from函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: add_stars

def add_stars(ax, P_mat, tri=True):
    '''
    Use the p matrix to add stars to the significant cells.

    If triangle is True then only put stars in the lower triangle, otherwise
    put them in all the cells
    '''
    # Import what you need
    import numpy as np
    # Get the indices you need
    if tri:
        i_inds, j_inds = np.triu_indices_from(P_mat, k=0)
    else:
        i_inds, j_inds = np.triu_indices_from(P_mat, k=P_mat.shape[0]*-1)
    
    # Loop through all the measures and fill the arrays
    for i, j in zip(i_inds, j_inds):

        # Figure out the text you're going to put on the plot
        star = ''
        if 0.01 < P_mat[i,j] < 0.05:
            star = '*'
        elif 0.001 <= P_mat[i,j] < 0.01:
            star = '**'
        elif P_mat[i,j] < 0.001:
            star = '***'

        text = ax.text(i, j, star,
            horizontalalignment='center',
            verticalalignment='center',
            color = 'k')

    return ax
开发者ID:KirstieJane,项目名称:DESCRIBING_DATA,代码行数:33,代码来源:create_correlation_matrix.py

示例2: get_measurement_polynomials

        def get_measurement_polynomials(self, noise = 0, seed = 0):
            np.random.seed(seed)

            k, d = self.k, self.d
            params = self.get_parameters()
            R = ring([x for x, _ in params], RR)[0]
            names = {str(x) : R(x) for x in R.symbols}
            xs = array([[names[self.x(i,j)] for j in xrange(k)] for i in xrange(d)])
            params = [(names[x], v) for x, v in params]

            # Second order moments (TODO: 3rd order moments)
            P = zeros((d,d), dtype=np.object)
            p = zeros((d,), dtype=np.object)
            for i in xrange(d):
                p[i] = sum(xs[i,k_] for k_ in xrange(k))# / k
                for j in xrange(i, d):
                    P[i,j] = sum(xs[i,k_] * xs[j,k_] for k_ in xrange(k))# / k

            # Project and profit
            m = zeros((d,))
            M = zeros((d,d))
            for i in xrange(d):
                m[i] = p[i].evaluate(params)
                for j in xrange(i, d):
                    M[i,j] = P[i,j].evaluate(params)
            M = M + noise * np.random.randn(d,d)
            m = m + noise * np.random.randn(d)
            # TODO: Something is wrong here 
            #m = M.sum(1)

            # Finally return values.
            return R, [f - f_ 
                    for f, f_ in zip(p.flatten(), m.flatten())] + [f - f_ 
                            for f, f_ in zip(P[triu_indices_from(P)], M[triu_indices_from(M)])]
开发者ID:sidaw,项目名称:polymom,代码行数:34,代码来源:examples.py

示例3: _expected_kid_and_std

def _expected_kid_and_std(real_imgs, gen_imgs, max_block_size=1024):
  n_r, dim = real_imgs.shape
  n_g = gen_imgs.shape[0]

  n_blocks = int(np.ceil(max(n_r, n_g) / max_block_size))

  sizes_r = np.full(n_blocks, n_r // n_blocks)
  to_patch = n_r - n_blocks * (n_r // n_blocks)
  if to_patch > 0:
    sizes_r[-to_patch:] += 1
  inds_r = np.r_[0, np.cumsum(sizes_r)]
  assert inds_r[-1] == n_r

  sizes_g = np.full(n_blocks, n_g // n_blocks)
  to_patch = n_g - n_blocks * (n_g // n_blocks)
  if to_patch > 0:
    sizes_g[-to_patch:] += 1
  inds_g = np.r_[0, np.cumsum(sizes_g)]
  assert inds_g[-1] == n_g

  ests = []
  for i in range(n_blocks):
    r = real_imgs[inds_r[i]:inds_r[i + 1]]
    g = gen_imgs[inds_g[i]:inds_g[i + 1]]

    k_rr = (np.dot(r, r.T) / dim + 1)**3
    k_rg = (np.dot(r, g.T) / dim + 1)**3
    k_gg = (np.dot(g, g.T) / dim + 1)**3
    ests.append(-2 * k_rg.mean() +
                k_rr[np.triu_indices_from(k_rr, k=1)].mean() +
                k_gg[np.triu_indices_from(k_gg, k=1)].mean())

  var = np.var(ests, ddof=1) if len(ests) > 1 else np.nan
  return np.mean(ests), np.sqrt(var / len(ests))
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:34,代码来源:classifier_metrics_test.py

示例4: plot_clustering_similarity

def plot_clustering_similarity(results, plot_dir=None, verbose=False, ext='png'):  
    HCA = results.HCA
    # get all clustering solutions
    clusterings = HCA.results.items()
    # plot cluster agreement across embedding spaces
    names = [k for k,v in clusterings]
    cluster_similarity = np.zeros((len(clusterings), len(clusterings)))
    cluster_similarity = pd.DataFrame(cluster_similarity, 
                                     index=names,
                                     columns=names)
    
    distance_similarity = np.zeros((len(clusterings), len(clusterings)))
    distance_similarity = pd.DataFrame(distance_similarity, 
                                     index=names,
                                     columns=names)
    for clustering1, clustering2 in combinations(clusterings, 2):
        name1 = clustering1[0].split('-')[-1]
        name2 = clustering2[0].split('-')[-1]
        # record similarity of distance_df
        dist_corr = np.corrcoef(squareform(clustering1[1]['distance_df']),
                                squareform(clustering2[1]['distance_df']))[1,0]
        distance_similarity.loc[name1, name2] = dist_corr
        distance_similarity.loc[name2, name1] = dist_corr
        # record similarity of clustering of dendrogram
        clusters1 = clustering1[1]['labels']
        clusters2 = clustering2[1]['labels']
        rand_score = adjusted_rand_score(clusters1, clusters2)
        MI_score = adjusted_mutual_info_score(clusters1, clusters2)
        cluster_similarity.loc[name1, name2] = rand_score
        cluster_similarity.loc[name2, name1] = MI_score
    
    with sns.plotting_context(context='notebook', font_scale=1.4):
        clust_fig = plt.figure(figsize = (12,12))
        sns.heatmap(cluster_similarity, square=True)
        plt.title('Cluster Similarity: TRIL: Adjusted MI, TRIU: Adjusted Rand',
                  y=1.02)
        
        dist_fig = plt.figure(figsize = (12,12))
        sns.heatmap(distance_similarity, square=True)
        plt.title('Distance Similarity, metric: %s' % HCA.dist_metric,
                  y=1.02)
        
    if plot_dir is not None:
        save_figure(clust_fig, path.join(plot_dir, 
                                   'cluster_similarity_across_measures.%s' % ext),
                    {'bbox_inches': 'tight'})
        save_figure(dist_fig, path.join(plot_dir, 
                                   'distance_similarity_across_measures.%s' % ext),
                    {'bbox_inches': 'tight'})
        plt.close(clust_fig)
        plt.close(dist_fig)
    
    if verbose:
        # assess relationship between two measurements
        rand_scores = cluster_similarity.values[np.triu_indices_from(cluster_similarity, k=1)]
        MI_scores = cluster_similarity.T.values[np.triu_indices_from(cluster_similarity, k=1)]
        score_consistency = np.corrcoef(rand_scores, MI_scores)[0,1]
        print('Correlation between measures of cluster consistency: %.2f' \
              % score_consistency)
开发者ID:IanEisenberg,项目名称:Self_Regulation_Ontology,代码行数:59,代码来源:HCA_plots.py

示例5: mat2vec

def mat2vec(m,include_diag=False):
    # Hack to be compatible with matlab column-wise instead of row-wise
    if include_diag:
        inddown = np.triu_indices_from(m,0)
    else:
        inddown = np.triu_indices_from(m,1)

    inddown = (inddown[1], inddown[0])
    return m[inddown]
开发者ID:yassinebha,项目名称:Proteus,代码行数:9,代码来源:tseries.py

示例6: test_simple_hessenberg_trafo

def test_simple_hessenberg_trafo():
    # Made up discrete time TF
    G = Transfer([1., -8., 28., -58., 67., -30.],
                 poly([1, 2, 3., 2, 3., 4, 1 + 1j, 1 - 1j]), dt=0.1)
    H, _ = hessenberg_realization(G, compute_T=1, form='c', invert=1)
    assert_(not np.any(H.a[triu_indices_from(H.a, k=2)]))
    assert_(not np.any(H.b[:-1, 0]))
    H = hessenberg_realization(G, form='o', invert=1)
    assert_(not np.any(H.c[0, :-1]))
    assert_(not np.any(H.a.T[triu_indices_from(H.a, k=2)]))
开发者ID:ilayn,项目名称:harold,代码行数:10,代码来源:test_system_funcs.py

示例7: LML_se

 def LML_se(self,theta,returnGradients=False):
     self.setTheta(theta)
     K,r = self.cov(self.X,retr=True)
     Ky = K.copy()
     Ky +=  np.eye(self.X.shape[0])*self.var_n + np.eye(self.X.shape[0])*1e-8
     L = self.cholSafe(Ky)
     WlogDet = 2.*np.sum(np.log(np.diag(L)))
     alpha, status = dpotrs(L, self.Y, lower=1)
     dataFit = - np.sum(alpha * self.Y)
     modelComplexity = -self.Y.shape[1] * WlogDet
     normalizer = -self.Y.size * log2pi
     logMarginalLikelihood = 0.5*(dataFit + modelComplexity + normalizer)
     if returnGradients == False:
         return logMarginalLikelihood
     else:
         Wi, status = dpotri(-L, lower=1)
         Wi = np.asarray(Wi)
         # copy bottom triangle to top triangle
         triu = np.triu_indices_from(Wi,k=1)
         Wi[triu] = Wi.T[triu]
         # dL = change in LML, dK is change in Kernel(K)
         dL_dK = 0.5 * (np.dot(alpha,alpha.T) - self.Y.shape[1] * Wi)
         dL_dVarn = np.diag(dL_dK).sum()
         varfGradient = np.sum(K* dL_dK)/self.var_f
         dK_dr = -r*K
         dL_dr = dK_dr * dL_dK
         lengthscaleGradient = -np.sum(dL_dr*r)/self.charLen
         grads = np.array([varfGradient, lengthscaleGradient, dL_dVarn])
         return logMarginalLikelihood, grads
开发者ID:Troy-Wilson,项目名称:ASV-Autonomous-Bathymetry,代码行数:29,代码来源:OnlineGP.py

示例8: test_pairplot_reg

    def test_pairplot_reg(self):

        vars = ["x", "y", "z"]
        g = ag.pairplot(self.df, diag_kind="hist", kind="reg")

        for ax in g.diag_axes:
            nt.assert_equal(len(ax.patches), 10)

        for i, j in zip(*np.triu_indices_from(g.axes, 1)):
            ax = g.axes[i, j]
            x_in = self.df[vars[j]]
            y_in = self.df[vars[i]]
            x_out, y_out = ax.collections[0].get_offsets().T
            npt.assert_array_equal(x_in, x_out)
            npt.assert_array_equal(y_in, y_out)

            nt.assert_equal(len(ax.lines), 1)
            nt.assert_equal(len(ax.collections), 2)

        for i, j in zip(*np.tril_indices_from(g.axes, -1)):
            ax = g.axes[i, j]
            x_in = self.df[vars[j]]
            y_in = self.df[vars[i]]
            x_out, y_out = ax.collections[0].get_offsets().T
            npt.assert_array_equal(x_in, x_out)
            npt.assert_array_equal(y_in, y_out)

            nt.assert_equal(len(ax.lines), 1)
            nt.assert_equal(len(ax.collections), 2)

        for i, j in zip(*np.diag_indices_from(g.axes)):
            ax = g.axes[i, j]
            nt.assert_equal(len(ax.collections), 0)
开发者ID:mwaskom,项目名称:seaborn,代码行数:33,代码来源:test_axisgrid.py

示例9: test_pairplot

    def test_pairplot(self):

        vars = ["x", "y", "z"]
        g = ag.pairplot(self.df)

        for ax in g.diag_axes:
            assert len(ax.patches) > 1

        for i, j in zip(*np.triu_indices_from(g.axes, 1)):
            ax = g.axes[i, j]
            x_in = self.df[vars[j]]
            y_in = self.df[vars[i]]
            x_out, y_out = ax.collections[0].get_offsets().T
            npt.assert_array_equal(x_in, x_out)
            npt.assert_array_equal(y_in, y_out)

        for i, j in zip(*np.tril_indices_from(g.axes, -1)):
            ax = g.axes[i, j]
            x_in = self.df[vars[j]]
            y_in = self.df[vars[i]]
            x_out, y_out = ax.collections[0].get_offsets().T
            npt.assert_array_equal(x_in, x_out)
            npt.assert_array_equal(y_in, y_out)

        for i, j in zip(*np.diag_indices_from(g.axes)):
            ax = g.axes[i, j]
            nt.assert_equal(len(ax.collections), 0)

        g = ag.pairplot(self.df, hue="a")
        n = len(self.df.a.unique())

        for ax in g.diag_axes:
            assert len(ax.lines) == n
            assert len(ax.collections) == n
开发者ID:mwaskom,项目名称:seaborn,代码行数:34,代码来源:test_axisgrid.py

示例10: plot_corr

def plot_corr(df, size=10):
    """Function plots a graphical correlation matrix for each pair of columns in the dataframe.

    Input:
        df: pandas DataFrame
        size: vertical and horizontal size of the plot"""
    import matplotlib.pyplot as plt
    from matplotlib import cm
    import numpy as np

    corr = df.corr()
    label = df.corr()
    mask = np.tri(corr.shape[0], k=-1)
    corr = np.ma.array(corr, mask=mask)
    mask[np.triu_indices_from(mask)] = True

    fig, ax = plt.subplots(figsize=(size, size))
    ax.matshow(corr)
    cmap = cm.get_cmap("jet", 10)
    cmap.set_bad("w")

    plt.xticks(range(len(label.columns)), label.columns, rotation=90)
    plt.yticks(range(len(label.columns)), label.columns)
    ax.imshow(corr, interpolation="nearest", cmap=cmap)
    plt.show()
开发者ID:PandaStabber,项目名称:rfecvNano,代码行数:25,代码来源:helperFunctions.py

示例11: __init__

    def __init__(self, master, x_train, y_train, x_test, y_test, evaluator, df, console):
        Tk.Frame.__init__(self, master)
        self.x_train = x_train
        self.y_train = y_train
        self.x_test = x_test
        self.y_test = y_test
        self.evaluator = evaluator
        self.df = df
        self.console = console

        frame_train = Tk.Frame(self)
        frame_train.pack(fill=Tk.BOTH, expand=1, padx=15, pady=15)
        plt.figure(figsize=(12, 20))
        plt.subplot(111)

        # 背景色白色
        sns.set(style="white")
        # 特征关联矩阵(矩阵里不仅包含特征,还包括类别)
        corr = df.corr()
        # 隐藏矩阵的上三角
        mask = np.zeros_like(corr, dtype=np.bool)
        mask[np.triu_indices_from(mask)] = True
        # 画图
        f, ax = plt.subplots(figsize=(11, 11))
        cmap = sns.diverging_palette(220, 10, as_cmap=True)
        sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, square=True, linewidths=.5, cbar_kws={"shrink": .5}, ax=ax)
        plt.xticks(rotation=-90)
        plt.yticks(rotation=0)
        plt.title("Cardiotocography \"Feature-Feature\" & \"Feature-Label\" Correlations")
        self.attach_figure(plt.gcf(), frame_train)
开发者ID:vincent2610,项目名称:cancer-assessment,代码行数:30,代码来源:frame_features_corr.py

示例12: unpad_randomize_and_flatten

  def unpad_randomize_and_flatten(self, cm):
    """
    1. Remove zero padding on Coulomb Matrix
    2. Randomly permute the rows and columns for n_samples
    3. Flatten each sample to upper triangular portion
    Returns list of feature vectors
    """
    max_atom_number = len(cm) 
    atom_number = 0
    for i in cm[0]:
        if atom_number == max_atom_number: break
        elif i != 0.: atom_number += 1
        else: break

    upcm = cm[0:atom_number,0:atom_number]

    row_norms = np.asarray(
        [np.linalg.norm(row) for row in upcm], dtype=float)
    rng = np.random.RandomState(self.seed)
    e = rng.normal(size=row_norms.size)
    p = np.argsort(row_norms+e)
    rcm = upcm[p][:,p]
    rcm = pad_array(rcm, len(cm))
    rcm = rcm[np.triu_indices_from(rcm)]

    return rcm
开发者ID:apappu97,项目名称:deepchem,代码行数:26,代码来源:transformers.py

示例13: threshold_matrix

def threshold_matrix(M, cost):
    '''
    M is the full association matrix.
    cost is the percentage (0 to 100) at which you'd like to threshold
    
    threshold_matrix first creates a copy of the input matrix, then
    sets all diagonal values to 0. It next calculates the minimum spanning tree,
    and ensures that those edges are *always* included in the thresholded
    matrix.
    
    then sets all values below the 
    appropriate percentile to 0
    '''
    # Make a copy of the matrix
    thr_M = np.copy(M)
    
    # Set all diagonal values to -999    
    thr_M[np.diag_indices_from(thr_M)] = -999
    
    # Calculate minmum spanning tree
    G = nx.from_numpy_matrix(M)
    mst = nx.minimum_spanning_tree(G, weight='weight'*-1)
    
    # Calculate the threshold value
    thr = np.percentile(thr_M[np.triu_indices_from(thr_M, k=1)], cost)
    
    # Set all values that are less than the threshold to 0
    thr_M[thr_M < thr] = 0
       
    # Set all values that are not zero to 1
    thr_M[thr_M != 0] = 1

    return thr_M
开发者ID:leetaey,项目名称:NSPN_CODE,代码行数:33,代码来源:networkx_functions.py

示例14: _process

    def _process(self,data):
        for x in data:
            
            if data[x][1] not in self.data:
                #prepares the data to visualise the xcor matrix of a specific batch number.
                self.data[data[x][1]]={}
                self.data[data[x][1]]['matrix']=numpy.identity(self.size)
                self.data[data[x][1]]['ro_count']=0
            
            self.data[data[x][1]]['matrix'][(data[x][2][1],data[x][2][0])]=data[x][0]
            #self.addToProvState('batch_'+str(data[x][1]),self.data[data[x][1]]['matrix'],metadata={'matrix':str(self.data[data[x][1]]['matrix'])},dep=['batch_'+str(data[x][1])],ignore_inputs=False)
            self.data[data[x][1]]['ro_count']+=1
            
            if self.data[data[x][1]]['ro_count']==(self.size*(self.size-1))/2:
                matrix=self.data[data[x][1]]['matrix']
                
                d = pd.DataFrame(data=matrix,
                 columns=range(0,self.size),index=range(0,self.size))
                
                mask = numpy.zeros_like(d, dtype=numpy.bool)
                mask[numpy.triu_indices_from(mask)] = True

                # Set up the matplotlib figure
                f, ax = plt.subplots(figsize=(11, 9))

                # Generate a custom diverging colormap
                cmap = sns.diverging_palette(220, 10, as_cmap=True)

                # Draw the heatmap with the mask and correct aspect ratio
                sns.heatmap(d, mask=mask, cmap=cmap, vmax=1,
                    square=True,
                    linewidths=.5, cbar_kws={"shrink": .5}, ax=ax)
                
                sns.plt.savefig("./plots/"+str(data[x][1])+"_plot.png") 
                self.write('output',(matrix,data[x][1]),metadata={'matrix':str(d),'batch':str(data[x][1])},dep=['batch_'+str(data[x][1])])
开发者ID:aspinuso,项目名称:VERCE,代码行数:35,代码来源:rtxcor_rays.py

示例15: convert_file

def convert_file(in_file, out_file, factors=[.25, 1, 4]):
    with h5py.File(in_file, 'r') as inp:
        func_ks = [
            (df, k)
            for df, g in inp.iteritems() if df != '_meta'
            for k in g.iterkeys()
        ]

    meds = {}
    for df, k in func_ks:
        with h5py.File(in_file, 'r') as inp:
            divs = inp[df][k][()]

        if df in meds:
            med = meds[df]
        else:
            meds[df] = med = np.median(divs[np.triu_indices_from(divs)])

        for factor in factors:
            name = 'median * {}'.format(factor)
            print '/'.join((df, k, name))

            with h5py.File(out_file) as out:
                g = out.require_group(df).require_group(k)
                if name in g:
                    print '\talready there'
                    continue

            km = sdm.sdm.make_km(divs, med * factor)
            with h5py.File(out_file) as out:
                out[df][k][name] = km
开发者ID:dougalsutherland,项目名称:hsfuap,代码行数:31,代码来源:make_kernels.py


注:本文中的numpy.triu_indices_from函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。