当前位置: 首页>>代码示例>>Python>>正文


Python numpy.stack函数代码示例

本文整理汇总了Python中numpy.stack函数的典型用法代码示例。如果您正苦于以下问题:Python stack函数的具体用法?Python stack怎么用?Python stack使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了stack函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: arrow3d

def arrow3d(base, r1, r2, ort, l, h, m = 13, pivot = 'tail'):
    x = np.array([1., 0., 0.])
    y = np.array([0., 1., 0.])
    th = np.linspace(0, np.pi*2, m).reshape(-1,1)
    ort = norm_vec(ort)
    if np.sum(ort * x) == 0:
       d1 = norm_vec(np.cross(ort, y))
    else:
       d1 = norm_vec(np.cross(ort, x))
    if pivot == 'tip':
       base = base - (l+h)*ort
    elif pivot == 'mid':
       base = base - (l+h)*ort/2.
    else:
       pass
    d2 = np.cross(ort, d1)
    p = base + l*r1* (d1*np.cos(th) + d2*np.sin(th))
    q = p + l*ort
    p2 = base + l*r2* (d1*np.cos(th) + d2*np.sin(th)) + l*ort
    p3 = base + (l+h)*ort 
    p3 = np.array([p3]*m).reshape(-1, 3)
    t1 = np.stack((p[:-1], q[:-1], p[1:]), axis=1)
    t2 = np.stack((p[1:], q[:-1], q[1:]), axis=1)
    t3 = np.stack((p2[:-1], p3[:-1], p2[1:]), axis=1)
    #t2 = np.dstack((p[1:], q[:-1], q[1:]))
    t1  = np.vstack((t1, t2, t3))
    return t1
开发者ID:piScope,项目名称:piScope,代码行数:27,代码来源:axes3d_mod.py

示例2: check_rnn_forward

def check_rnn_forward(layer, inputs, deterministic=True):
    if isinstance(inputs, mx.nd.NDArray):
        inputs.attach_grad()
    else:
        for x in inputs:
            x.attach_grad()
    layer.collect_params().initialize()
    with mx.autograd.record():
        out = layer.unroll(3, inputs, merge_outputs=False)[0]
        mx.autograd.backward(out)
        out = layer.unroll(3, inputs, merge_outputs=True)[0]
        out.backward()

    np_out = out.asnumpy()
    if isinstance(inputs, mx.nd.NDArray):
        np_dx = inputs.grad.asnumpy()
    else:
        np_dx = np.stack([x.grad.asnumpy() for x in inputs], axis=1)

    layer.hybridize()

    with mx.autograd.record():
        out = layer.unroll(3, inputs, merge_outputs=False)[0]
        mx.autograd.backward(out)
        out = layer.unroll(3, inputs, merge_outputs=True)[0]
        out.backward()

    if isinstance(inputs, mx.nd.NDArray):
        input_grads = inputs.grad.asnumpy()
    else:
        input_grads = np.stack([x.grad.asnumpy() for x in inputs], axis=1)

    if deterministic:
        mx.test_utils.assert_almost_equal(np_out, out.asnumpy(), rtol=1e-3, atol=1e-5)
        mx.test_utils.assert_almost_equal(np_dx, input_grads, rtol=1e-3, atol=1e-5)
开发者ID:dpom,项目名称:incubator-mxnet,代码行数:35,代码来源:test_gluon_rnn.py

示例3: step

  def step(self, action):
    """Forward a batch of actions to the wrapped environments.

    Args:
      action: Batched action to apply to the environment.

    Raises:
      ValueError: Invalid actions.

    Returns:
      Batch of observations, rewards, and done flags.
    """
    actions = action
    for index, (env, action) in enumerate(zip(self._envs, actions)):
      if not env.action_space.contains(action):
        message = 'Invalid action at index {}: {}'
        raise ValueError(message.format(index, action))
    if self._blocking:
      transitions = [
          env.step(action)
          for env, action in zip(self._envs, actions)]
    else:
      transitions = [
          env.step(action, blocking=False)
          for env, action in zip(self._envs, actions)]
      transitions = [transition() for transition in transitions]
    observs, rewards, dones, infos = zip(*transitions)
    observ = np.stack(observs)
    reward = np.stack(rewards)
    done = np.stack(dones)
    info = tuple(infos)
    return observ, reward, done, info
开发者ID:AndrewMeadows,项目名称:bullet3,代码行数:32,代码来源:batch_env.py

示例4: split_data

def split_data(chars, batch_size, num_steps, split_frac=0.9):
    """
    Split character data into training and validation sets, inputs and targets for each set.
    Arguments
    ---------
    chars: character array
    batch_size: Size of examples in each of batch
    num_steps: Number of sequence steps to keep in the input and pass to the network
    split_frac: Fraction of batches to keep in the training set
    Returns train_x, train_y, val_x, val_y
    """

    slice_size = batch_size * num_steps
    n_batches = int(len(chars) / slice_size)

    # Drop the last few characters to make only full batches
    x = chars[: n_batches * slice_size]
    y = chars[1: n_batches * slice_size + 1]

    # Split the data into batch_size slices, then stack them into a 2D matrix
    x = np.stack(np.split(x, batch_size))
    y = np.stack(np.split(y, batch_size))

    # Now x and y are arrays with dimensions batch_size x n_batches*num_steps

    # Split into training and validation sets, keep the first split_frac batches for training
    split_idx = int(n_batches * split_frac)
    train_x, train_y = x[:, :split_idx * num_steps], y[:, :split_idx * num_steps]
    val_x, val_y = x[:, split_idx * num_steps:], y[:, split_idx * num_steps:]

    return train_x, train_y, val_x, val_y
开发者ID:Eudie,项目名称:Online-Practice,代码行数:31,代码来源:building_text_generator.py

示例5: load_mask_labels

def load_mask_labels():
    '''Load both target and style masks.
    A mask image (nr x nc) with m labels/colors will be loaded
    as a 4D boolean tensor: (1, m, nr, nc) for 'th' or (1, nr, nc, m) for 'tf'
    '''
    target_mask_img = load_img(target_mask_path,
                               target_size=(img_nrows, img_ncols))
    target_mask_img = img_to_array(target_mask_img)
    style_mask_img = load_img(style_mask_path,
                              target_size=(img_nrows, img_ncols))
    style_mask_img = img_to_array(style_mask_img)
    if K.image_dim_ordering() == 'th':
        mask_vecs = np.vstack([style_mask_img.reshape((3, -1)).T,
                               target_mask_img.reshape((3, -1)).T])
    else:
        mask_vecs = np.vstack([style_mask_img.reshape((-1, 3)),
                               target_mask_img.reshape((-1, 3))])

    labels = kmeans(mask_vecs, nb_labels)
    style_mask_label = labels[:img_nrows *
                              img_ncols].reshape((img_nrows, img_ncols))
    target_mask_label = labels[img_nrows *
                               img_ncols:].reshape((img_nrows, img_ncols))

    stack_axis = 0 if K.image_dim_ordering() == 'th' else -1
    style_mask = np.stack([style_mask_label == r for r in xrange(nb_labels)],
                          axis=stack_axis)
    target_mask = np.stack([target_mask_label == r for r in xrange(nb_labels)],
                           axis=stack_axis)

    return (np.expand_dims(style_mask, axis=0),
            np.expand_dims(target_mask, axis=0))
开发者ID:AnishShah,项目名称:keras,代码行数:32,代码来源:neural_doodle.py

示例6: formatPeaksArbitraryPSF

def formatPeaksArbitraryPSF(peaks, peaks_type):
    """
    Input peaks array formatter for arbitrary PSFs.

    Based on peaks_type, create a properly formatted ndarray to pass
    to the C library. This is primarily for internal use by newPeaks().
    """
    # These come from the finder, or the unit test code, create peaks
    # as (N,3) with columns x, y, z.
    #
    if (peaks_type == "testing") or (peaks_type == "finder"):
        c_peaks = numpy.stack((peaks["x"],
                               peaks["y"],
                               peaks["z"]), axis = 1)

    # These come from pre-specified peak fitting locations, create peaks
    # as (N,5) with columns x, y, z, background, height.
    #
    elif (peaks_type == "text") or (peaks_type == "hdf5"):
        c_peaks = numpy.stack((peaks["x"],
                               peaks["y"],
                               peaks["z"],
                               peaks["background"],
                               peaks["height"]), axis = 1)
    else:
        raise MultiFitterException("Unknown peaks type '" + peaks_type + "'")

    return numpy.ascontiguousarray(c_peaks, dtype = numpy.float64)
开发者ID:ZhuangLab,项目名称:storm-analysis,代码行数:28,代码来源:dao_fit_c.py

示例7: converter

def converter(batch, device, max_caption_length=None):
    """Optional preprocessing of the batch before forward pass."""
    pad = max_caption_length is not None

    imgs = []
    captions = []
    for img, caption in batch:
        # Preproess the caption by either fixing the length by padding (LSTM)
        # or by simply wrapping each caption in an ndarray (NStepLSTM)
        if pad:
            arr = np.full(max_caption_length, _ignore, dtype=np.int32)

            # Clip to max length if necessary
            arr[:len(caption)] = caption[:max_caption_length]
            caption = arr
        else:
            caption = to_device(device, np.asarray(caption, dtype=np.int32))

        imgs.append(img)
        captions.append(caption)

    if pad:
        captions = to_device(device, np.stack(captions))
    imgs = to_device(device, np.stack(imgs))

    return imgs, captions
开发者ID:Fhrozen,项目名称:chainer,代码行数:26,代码来源:datasets.py

示例8: get_filters

def get_filters(R, filter_size, P=None, n_rings=None):
   """Perform single-frequency DFT on each ring of a polar-resampled patch"""
   k = filter_size
   filters = {}
   N = n_samples(k)
   from scipy.linalg import dft
   for m, r in R.iteritems():
      rsh = r.shape
      # Get the basis matrices
      weights = get_interpolation_weights(k, m, n_rings=n_rings)
      DFT = dft(N)[m,:]
      LPF = np.dot(DFT, weights).T
      cosine = np.real(LPF).astype(np.float32)
      sine = np.imag(LPF).astype(np.float32)
       # Project taps on to rotational basis
      r = np.reshape(r, np.stack([rsh[0],rsh[1]*rsh[2]]))
      ucos = np.reshape(np.dot(cosine, r), np.stack([k, k, rsh[1], rsh[2]]))
      usin = np.reshape(np.dot(sine, r), np.stack([k, k, rsh[1], rsh[2]]))
      if P is not None:
         # Rotate basis matrices
         ucos_ = np.cos(P[m])*ucos + np.sin(P[m])*usin
         usin = -np.sin(P[m])*ucos + np.cos(P[m])*usin
         ucos = ucos_
      filters[m] = (ucos, usin)
   return filters
开发者ID:deworrall92,项目名称:groupConvolutions,代码行数:25,代码来源:numpy_hconv.py

示例9: _read

    def _read(self, key):
        ifnone = lambda a, b: b if a is None else a

        y = key[1]
        x = key[2]
        if isinstance(x, slice):
            xstart = ifnone(x.start,0)
            xstop = ifnone(x.stop,self.raster_size[0])
            xstep = xstop - xstart
        else:
            raise TypeError("Loc style access elements must be slices, e.g., [:] or [10:100]")
        if isinstance(y, slice):
            ystart = ifnone(y.start, 0)
            ystop = ifnone(y.stop, self.raster_size[1])
            ystep = ystop - ystart
        else:
            raise TypeError("Loc style access elements must be slices, e.g., [:] or [10:100]")

        pixels = (xstart, ystart, xstep, ystep)
        if isinstance(key[0], (int, np.integer)):
            return self.read_array(band=int(key[0]+1), pixels=pixels)

        elif isinstance(key[0], slice):
            # Given some slice iterate over the bands and get the bands and pixel space requested
            arrs = []
            for band in list(list(range(1, self.nbands + 1))[key[0]]):
                arrs.append(self.read_array(band, pixels = pixels))
            return np.stack(arrs)

        else:
            arrs = []
            for b in key[0]:
                arrs.append(self.read_array(band=int(b+1), pixels=pixels))
        return np.stack(arrs)
开发者ID:USGS-Astrogeology,项目名称:plio,代码行数:34,代码来源:hcube.py

示例10: translist_to_traj

 def translist_to_traj(tlist):
     obs_T_Do = np.stack([trans[0] for trans in tlist]);  assert obs_T_Do.shape == (len(tlist), self.obs_space.storage_size)
     obsfeat_T_Df = np.stack([trans[1] for trans in tlist]); assert obsfeat_T_Df.shape[0] == len(tlist)
     adist_T_Pa = np.stack([trans[2] for trans in tlist]); assert adist_T_Pa.ndim == 2 and adist_T_Pa.shape[0] == len(tlist)
     a_T_Da = np.stack([trans[3] for trans in tlist]); assert a_T_Da.shape == (len(tlist), self.action_space.storage_size)
     r_T = np.stack([trans[4] for trans in tlist]); assert r_T.shape == (len(tlist),)
     return Trajectory(obs_T_Do, obsfeat_T_Df, adist_T_Pa, a_T_Da, r_T)
开发者ID:1769948908,项目名称:imitation,代码行数:7,代码来源:__init__.py

示例11: get_non_missing

def get_non_missing(ids, x, y, real_codes):
    """
    Takes lists of the data and removes missing data!
    :param ids:
    :param x:
    :param y:
    :param real_codes:
    :return:
    """

    dataset = zip(ids, x, y, real_codes)
    dataset = np.array(dataset, dtype=object)
    non_miss = dataset[~(dataset[:,3] == '""')]

    id_clean = non_miss[:,0].tolist()           ##Takes first column of non_missing matrix to writes it to a list
    text_clean = non_miss[:,1]
    code_clean = non_miss[:,2]
    real_codes_clean = non_miss[:,3].tolist()
    real_codes_clean = [float(i) for i in real_codes_clean]    ##Turns real_codes into floats for memory efficiency
    real_codes_clean = np.array(real_codes_clean)

    text_clean = np.stack(text_clean, axis=0)   ## Makes everything a 2D array instead of array of arrays...
    code_clean = np.stack(code_clean, axis=0)

    return [id_clean, text_clean, code_clean, real_codes_clean]
开发者ID:AdamHede,项目名称:text_cnn,代码行数:25,代码来源:data_importer_mine2.py

示例12: read

 def read(self, input_path):
     '''
     Reads in the data from input files
     '''
     self.lr_inputs = None
     self.sr_outputs = None
     print(input_path)
     filenames = glob.glob(input_path + '*')
     #TODO: remove assertion
     assert len(filenames) > 0
     random.shuffle(filenames)
     filenames = filenames[0:150]
     print('Length: ' + str(len(filenames)))
     filenames.sort()
     outputs = []
     inputs = []
     for filename in filenames:
         output_img = cv2.imread(filename)
         # Asserts the image is read correctly and not empty
         assert output_img.shape[0] > 0
         assert output_img.shape[1] > 0
         #TODO: read in actual depth
         output_depth = np.random.random((output_img.shape[0], output_img.shape[1], 1))
         #print(type(output_img))
         output_img = np.concatenate((output_img, output_depth), 2)
         #print(type(output_img))
         outputs.append(output_img)
         input_img = compute_lr_input(
                                      output_img, downsampling_factor_x=2, 
                                      downsampling_factor_y=2, blur_sigma=1.6, noise_sigma=0.03)
         inputs.append(input_img)
     self.sr_outputs = np.stack(outputs, axis=0)
     self.lr_inputs = np.stack(inputs, axis=0)
开发者ID:seb-kro,项目名称:RGB-D_SR_Net,代码行数:33,代码来源:dataset.py

示例13: step

 def step(self, action):
     # x = np.argmax(action[:image_width])
     # r = (np.argmax(action[image_width:]) - 1)
     # pic = self.canvas[:, :, 0]
     # if (r != -1):
     #    r = 2 ** r
     #    for i in range(image_width):
     #        if(np.sum(pic[i, x : x + r + 1])):
     #            self.draw(x, i, r)
     #            break
     x = (action[:image_width] + 1) / 2.
     y = (action[image_width:] + 1) / 2.
     grey = x * y.reshape(image_width, 1)
     grey = grey.reshape((image_width, image_width, 1))
     grey = (grey * (255, 255, 255) / 4).astype('uint8')
     grey = np.minimum(grey, self.canvas)
     self.canvas -= grey
     diff = self.diff()
     reward = (self.lastdiff - diff) / self.rewardscale # reward is positive if diff increased
     self.lastdiff = diff
     self.stepnum += 1
     ob = self.observation()
     self.canvas = np.stack(np.rot90(self.canvas))
     self.target = np.stack(np.rot90(self.target))
     self.time += 1. / max_step        
     return ob, reward, (self.stepnum >= max_step), None # o,r,d,i
开发者ID:megvii-rl,项目名称:pytorch-gym,代码行数:26,代码来源:env.py

示例14: main

def main(args):
    # load the model
    model = load_model(args.model_filename, custom_objects={
        'SubPixelUpscaling': SubPixelUpscaling
    })
    print model.layers
    # load the images and bucket them by shape
    images_by_size = defaultdict(list)
    for filename in glob.glob(args.image_glob):
        img = Image.open(filename)
        img = img.resize(map(lambda x: int(x * args.output_scale), img.size))  # scale up
        images_by_size[img.size].append(img)
    # apply the model to the images
    for size, imgs in images_by_size.items():
        images = map(img_to_array, imgs)
        images = (np.stack(images) / 127.5) - 1.
        # NOTE: :(
        x = input_layer = Input(shape=images.shape[1:])
        for layer in model.layers[1:]:
            x = layer(x)
        this_model = Model([input_layer], [x])
        this_model.compile(optimizer='sgd', loss='mse')
        # END :(
        new_images = images
        for _ in range(args.apply_n):
            new_images = this_model.predict(new_images, verbose=False)
        # save before/after images
        for i in range(new_images.shape[0]):
            new_image = new_images[i]
            image = images[i]
            samples = np.stack([image, new_image])
            filename = '{}_{}.png'.format(size, i)
            filename = os.path.join(args.output_path, filename)
            print('saving sample', samples.shape, filename)
            save_sample_grid(samples, filename)
开发者ID:awentzonline,项目名称:bob-loss,代码行数:35,代码来源:apply_fc.py

示例15: calc_score

    def calc_score(self):
        cardtype_names = np.array(
            ['highcard', 'pair', 'twopair', 'threeofakind', 'straight', 'flush', 'fullhouse', 'fourofakind',
             'straightflush'])
        self.cardtype_multiplier = np.array(
            [self.highcard_multiplier, self.pair_multiplier, self.twopair_multiplier, self.threeofakind_multiplier,
             self.straight_multiplier, self.flush_multiplier, self.fullhouse_multiplier, self.fourofakind_multiplier,
             self.straighflush_multiplier])
        self.detected_types = np.stack((self.highcard, self.pair, self.twopair, self.threeofakind,
                                        self.straight, self.flush, self.fullhouse, self.fourofakind,
                                        self.straightflush), axis=0)
        self.hand_vals = np.stack((self.highCardsVal, self.pairScore, self.twoPairScore, self.threeScore,self.straightScore,
                                   self.flushScore,self.fullhouseScore,self.fourofakindScore,self.straightflush_score),axis = 0)

        detected_types = self.detected_types * 1
        self.active_multiplier = self.cardtype_multiplier[:,None,None] * detected_types * self.hand_vals
        self.ordered_multiplier = np.sort(self.active_multiplier,axis = 0)[::-1,:,:]
        highestVals = np.argmax(self.ordered_multiplier[0,:,:], axis=1)
        Winners = (self.ordered_multiplier[0, ::] == np.amax(self.ordered_multiplier[0, :, :], axis=1)[:, None])
        MyWinnerMask = np.zeros(self.player_amount, dtype=int)
        MyWinnerMask[0] = 1
        MyWinnArray = (Winners == MyWinnerMask).all(1)
        MyWins = np.sum(MyWinnArray,axis = 0)



        # print('cardtype_multiplier \n {}'.format(self.cardtype_multiplier))
        # print('detected_types \n {}'.format(detected_types))
        # print('hand_vals \n {}'.format(self.hand_vals))
        # print('active_multiplier \n {}'.format(self.active_multiplier))
        # print('ordered_multiplier \n {}'.format(self.ordered_multiplier))
        # print('highest vals \n {}'.format(highestVals))
        # print('My Wins \n {}'.format(MyWins))

        return MyWins / self.iterations
开发者ID:dickreuter,项目名称:Poker,代码行数:35,代码来源:montecarlo_numpy2.py


注:本文中的numpy.stack函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。