当前位置: 首页>>代码示例>>Python>>正文


Python numpy.split函数代码示例

本文整理汇总了Python中numpy.split函数的典型用法代码示例。如果您正苦于以下问题:Python split函数的具体用法?Python split怎么用?Python split使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了split函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _read_tile

    def _read_tile(self, filename):

        with open(filename, "r") as tilefile:
            # this is reversed from the fortran b/c in is a reserved word
            self.ni, self.nj, self.nk = np.fromfile(tilefile, dtype="int32", 
                                                    count = 3, sep = " ")

            raw_data= np.genfromtxt(tilefile, 
                                    dtype = ("int32", "float64", "float64", "float64", "float64"),
                                    names = ("idx", "a", "b", "vla", "vlb"))

            self.ii, self.ij, self.ik = np.split(raw_data["idx"],
                                                 [self.ni,
                                                  self.ni+self.nj])

            self.x1a, self.x2a, self.x3a = np.split(raw_data["a"],
                                                    [self.ni,
                                                     self.ni+self.nj])

            self.x1b, self.x2b, self.x3b = np.split(raw_data["b"],
                                                    [self.ni,
                                                     self.ni+self.nj])

            self.vl1a, self.vl2a, self.vl3a = np.split(raw_data["vla"],
                                                    [self.ni,
                                                     self.ni+self.nj])

            self.vl1b, self.vl2b, self.vl3b = np.split(raw_data["vlb"],
                                                    [self.ni,
                                                     self.ni+self.nj])


            return
开发者ID:jschwab,项目名称:zeustools,代码行数:33,代码来源:grid.py

示例2: test_stratified_batches

def test_stratified_batches():
    data = np.array([('a', -1), ('b', 0), ('c', 1), ('d', -1), ('e', -1)],
                    dtype=[('x', np.str_, 8), ('y', np.int32)])

    assert list(data['x']) == ['a', 'b', 'c', 'd', 'e']
    assert list(data['y']) == [-1, 0, 1, -1, -1]

    batch_generator = training_batches(data, batch_size=3, n_labeled_per_batch=1)

    first_ten_batches = list(islice(batch_generator, 10))

    labeled_batch_portions = [batch[:1] for batch in first_ten_batches]
    unlabeled_batch_portions = [batch[1:] for batch in first_ten_batches]

    labeled_epochs = np.split(np.concatenate(labeled_batch_portions), 5)
    unlabeled_epochs = np.split(np.concatenate(unlabeled_batch_portions), 4)

    assert ([sorted(items['x'].tolist()) for items in labeled_epochs] ==
            [['b', 'c']] * 5)
    assert ([sorted(items['y'].tolist()) for items in labeled_epochs] ==
            [[0, 1]] * 5)
    assert ([sorted(items['x'].tolist()) for items in unlabeled_epochs] ==
            [['a', 'b', 'c', 'd', 'e']] * 4)
    assert ([sorted(items['y'].tolist()) for items in unlabeled_epochs] ==
            [[-1, -1, -1, -1, -1]] * 4)
开发者ID:ys2899,项目名称:mean-teacher,代码行数:25,代码来源:test_minibatching.py

示例3: drop_samples

def drop_samples(game, prob):
    """Drop samples from a sample game

    Samples are dropped independently with probability prob."""
    sample_map = {}
    for prof, pays in zip(np.split(game.profiles, game.sample_starts[1:]),
                          game.sample_payoffs):
        num_profiles, _, num_samples = pays.shape
        perm = rand.permutation(num_profiles)
        prof = prof[perm]
        pays = pays[perm]
        new_samples, counts = np.unique(
            rand.binomial(num_samples, prob, num_profiles), return_counts=True)
        splits = counts[:-1].cumsum()
        for num, prof_samp, pay_samp in zip(
                new_samples, np.split(prof, splits), np.split(pays, splits)):
            if num == 0:
                continue
            prof, pays = sample_map.setdefault(num, ([], []))
            prof.append(prof_samp)
            pays.append(pay_samp[..., :num])

    if sample_map:
        profiles = np.concatenate(list(itertools.chain.from_iterable(
            x[0] for x in sample_map.values())), 0)
        sample_payoffs = tuple(np.concatenate(x[1]) for x
                               in sample_map.values())
    else:  # No data
        profiles = np.empty((0, game.num_role_strats), dtype=int)
        sample_payoffs = []

    return rsgame.samplegame_copy(game, profiles, sample_payoffs, False)
开发者ID:yackj,项目名称:GameAnalysis,代码行数:32,代码来源:gamegen.py

示例4: split_dataset

def split_dataset(dataset, N=4000):
    perm = np.random.permutation(len(dataset['target']))
    dataset['data'] = dataset['data'][perm]
    dataset['target'] = dataset['target'][perm]
    x_train, x_test = np.split(dataset['data'],   [N])
    y_train, y_test = np.split(dataset['target'], [N])
    return x_train, y_train, x_test, y_test
开发者ID:fukatani,项目名称:soinn,代码行数:7,代码来源:train_mnist.py

示例5: update_h

def update_h(sigma2, phi, y, mu, psi):
    """Updates the hidden variables using updated parameters.

    This is an implementation of the equation:
..  math::
        \\hat{h} = (\\sigma^2 I + \\sum_{n=1}^N \\Phi_n^T A^T A \\Phi_n)^{-1} \\sum_{n=1}^N \\Phi_n^T A^T (y_n - A \\mu_n - b)

    """
    N = y.shape[0]
    K = phi.shape[1]

    A = psi.params[:2, :2]
    b = psi.translation

    partial_0 = 0
    for phi_n in np.split(phi, N, axis=0):
        partial_0 += phi_n.T @ A.T @ A @ phi_n

    partial_1 = sigma2 * np.eye(K) + partial_0

    partial_2 = np.zeros((K, 1))
    for phi_n, y_n, mu_n in zip(np.split(phi, N, axis=0), y, mu.reshape(-1, 2)):
        partial_2 += phi_n.T @ A.T @ (y_n - A @ mu_n - b).reshape(2, -1)

    return np.linalg.inv(partial_1) @ partial_2
开发者ID:jrdurrant,项目名称:vision,代码行数:25,代码来源:subspace_shape.py

示例6: split_data

def split_data(X,Y,degree):
       
      Testing_error =[] #all the testing errors of 10 fold cross validations
      Training_error = [] #all the training errors  of 10 fold cross validations
      X_sets =  np.split(X,10)
      Y_sets = np.split(Y,10)
      
      for i in range(len(X_sets)):
          X_test =np.vstack( X_sets[i])
          Y_test = np.vstack(Y_sets[i])
          if i<len(X_sets)-1: 
             X_train = np.vstack(X_sets[i+1:])      
             Y_train =np.vstack(Y_sets[i+1:])
          elif i==len(X_sets)-1 : 
             X_train = np.vstack(X_sets[:i])
             Y_train = np.vstack(Y_sets[:i])
          while i>0:
              tempX = np.vstack(X_sets[i-1])
              X_train = np.append(tempX,X_train)
              tempY = np.vstack(Y_sets[i-1])
              Y_train = np.append(tempY,Y_train)
              i = i-1
          X_train = np.vstack(X_train)
          Y_train = np.vstack(Y_train)
          Z_train,theta,Z_test = polynomial_withCV(X_train,Y_train,degree,X_test)
          Testing_error.append( mse(Z_test,theta,Y_test))
          Training_error.append(mse(Z_train,theta,Y_train))
      return sum(Testing_error),sum(Training_error)
开发者ID:ravitejachebrolu,项目名称:MachineLearning,代码行数:28,代码来源:singlefeature.py

示例7: get_train_data

    def get_train_data(self, label_types):
        labeled_images = self.get_labeled_images()
        x_train_all = np.asarray(map(
            lambda labeled_image_file: labeled_image_file.get_image(),
            labeled_images
        ))
        y_train_all = np.asarray(map(
            lambda labeled_image_file: label_to_output(labeled_image_file.get_label(), label_types),
            labeled_images
        ))
        length = len(labeled_images)

        # 元データをランダムに並べ替える
        indexes = np.random.permutation(length)
        x_train_all_rand = x_train_all[indexes]
        y_train_all_rand = y_train_all[indexes]

        # 平均画像を引く
        mean = self.get_mean_image()
        if mean is not None:
            x_train_all_rand -= mean
        # 正規化
        x_train_all /= 255

        # 1/5はテストに使う
        data_size = length * 4 / 5
        x_train, x_test = np.split(x_train_all_rand, [data_size])
        y_train, y_test = np.split(y_train_all_rand, [data_size])

        return x_train, x_test, y_train, y_test
开发者ID:syundo0730,项目名称:deresta-cnn,代码行数:30,代码来源:training_data.py

示例8: split_x

def split_x(x, split_pos):
    # NOTE: do not support multiple sentence tensors
    # sequence input , non-sequence input, and no non-sequence input
    # sequence input:
    if type(x) is not list:
        x=[x]

    if len(x) == 1:
        # sec1,                 sec2, sec3,...
        # sent1, sent2, sent5
        x01, x02 = tuple(np.split(x[0],[split_pos]))
        cond_list=[x02>=0,x02<0]
        offset = x02[0][0]
        choice_list=[x02-offset, x02 ]
        x02 = np.select(cond_list, choice_list)
        return ([x01],[x02])

    # doc1 doc2 doc3
    # sec1 sec2 ...

    # sec1, sec2, ...
    # sent1, sent2, ...

    x01, x02 = tuple(np.split(x[0], [split_pos]))
    offset = x02[0][0]
    x1, x2 = split_x(x[1:], offset)
    cond_list = [x02 >= 0, x02 < 0]
    choice_list = [x02 - offset, x02]
    x02 = np.select(cond_list, choice_list)
    return ([x01] + x1, [x02]+x2)
开发者ID:lxh5147,项目名称:cacdi_attention_model,代码行数:30,代码来源:attention_cacdi_exp_with_fuel.py

示例9: generate_svm

def generate_svm():
    digits, labels = load_digits(DIGITS_FN)

    print('preprocessing...')
    # shuffle digits
    rand = np.random.RandomState(321)
    shuffle = rand.permutation(len(digits))
    digits, labels = digits[shuffle], labels[shuffle]

    digits2 = list(map(deskew, digits))
    samples = preprocess_hog(digits2)

    train_n = int(0.9*len(samples))
    cv2.imshow('test set', mosaic(25, digits[train_n:]))
    digits_train, digits_test = np.split(digits2, [train_n])
    samples_train, samples_test = np.split(samples, [train_n])
    labels_train, labels_test = np.split(labels, [train_n])


    print('training SVM...')
    model = SVM(C=2.67, gamma=5.383)
    model.train(samples_train, labels_train)
    vis = evaluate_model(model, digits_test, samples_test, labels_test)
    print('saving SVM as "digits_svm.dat"...')
    return model

    cv2.waitKey(0)
开发者ID:shawnyanwang,项目名称:PIL_examples,代码行数:27,代码来源:digits.py

示例10: k_fold_cross_validation_sets

def k_fold_cross_validation_sets(X, y, k, shuffle=True):
    if shuffle:
        X, y = shuffle_data(X, y)

    n_samples = len(y)
    left_overs = {}
    n_left_overs = (n_samples % k)
    if n_left_overs != 0:
        left_overs["X"] = X[-n_left_overs:]
        left_overs["y"] = y[-n_left_overs:]
        X = X[:-n_left_overs]
        y = y[:-n_left_overs]

    X_split = np.split(X, k)
    y_split = np.split(y, k)
    sets = []
    for i in range(k):
        X_test, y_test = X_split[i], y_split[i]
        X_train = np.concatenate(X_split[:i] + X_split[i + 1:], axis=0)
        y_train = np.concatenate(y_split[:i] + y_split[i + 1:], axis=0)
        sets.append([X_train, X_test, y_train, y_test])

    # Add left over samples to last set as training samples
    if n_left_overs != 0:
        np.append(sets[-1][0], left_overs["X"], axis=0)
        np.append(sets[-1][2], left_overs["y"], axis=0)

    return np.array(sets)
开发者ID:NiranjanAgaram,项目名称:ML-From-Scratch,代码行数:28,代码来源:data_manipulation.py

示例11: to_json

    def to_json(self):
        base = super().to_json()
        base['offsets'] = self.payoff_to_json(self._offset)
        base['coefs'] = self.payoff_to_json(self._coefs)

        lengths = {}
        for role, strats, lens in zip(
                self.role_names, self.strat_names,
                np.split(self._lengths, self.role_starts[1:])):
            lengths[role] = {s: self.payoff_to_json(l)
                             for s, l in zip(strats, lens)}
        base['lengths'] = lengths

        profs = {}
        for role, strats, data in zip(
                self.role_names, self.strat_names,
                np.split(np.split(self._profiles, self._size_starts[1:]),
                         self.role_starts[1:])):
            profs[role] = {strat: [self.profile_to_json(p) for p in dat]
                           for strat, dat in zip(strats, data)}
        base['profiles'] = profs

        alphas = {}
        for role, strats, alphs in zip(
                self.role_names, self.strat_names,
                np.split(np.split(self._alpha, self._size_starts[1:]),
                         self.role_starts[1:])):
            alphas[role] = {s: a.tolist() for s, a in zip(strats, alphs)}
        base['alphas'] = alphas

        base['type'] = 'rbf.1'
        return base
开发者ID:egtaonline,项目名称:GameAnalysis,代码行数:32,代码来源:learning.py

示例12: update_stipples

    def update_stipples(self, cells):
        """ Updates stipple locations from an image
                cells should be an image of the same size as self.img
                with pixel values representing which Voronoi cell that
                pixel falls into
        """
        indices = np.argsort(cells.flat)
        _, boundaries = np.unique(cells.flat[indices], return_index=True)

        gxs = np.split(self.gx.flat[indices], boundaries)[1:]
        gys = np.split(self.gy.flat[indices], boundaries)[1:]
        gws = np.split(1 - self.img.flat[indices], boundaries)[1:]

        w = self.img.shape[1] / 2.0
        h = self.img.shape[0] / 2.0

        for i, (gx, gy, gw) in enumerate(zip(gxs, gys, gws)):
            weight = np.sum(gw)
            if weight > 0:
                x = np.sum(gx * gw) / weight
                y = np.sum(gy * gw) / weight

                self.stipples[i,:] = [(x - w) / w, (y - h) / h]
            else:
                self.stipples[i,:] = np.random.uniform(-1, 1, size=2)
开发者ID:BenFrantzDale,项目名称:OpenFL,代码行数:25,代码来源:stippler.py

示例13: make_predictions

def make_predictions(net, data, labels, num_classes):
    data = np.require(data, requirements='C')
    labels = np.require(labels, requirements='C')

    preds = np.zeros((data.shape[1], num_classes), dtype=np.single)
    softmax_idx = net.get_layer_idx('probs', check_type='softmax')

    t0 = time.time()
    net.libmodel.startFeatureWriter(
        [data, labels, preds], softmax_idx)
    net.finish_batch()
    print "Predicted %s cases in %.2f seconds." % (
        labels.shape[1], time.time() - t0)

    if net.multiview_test:
        #  We have to deal with num_samples * num_views
        #  predictions.
        num_views = net.test_data_provider.num_views
        num_samples = labels.shape[1] / num_views
        split_sections = range(
            num_samples, num_samples * num_views, num_samples)
        preds = np.split(preds, split_sections, axis=0)
        labels = np.split(labels, split_sections, axis=1)
        preds = reduce(np.add, preds)
        labels = labels[0]

    return preds, labels
开发者ID:invisibleroads,项目名称:noccn,代码行数:27,代码来源:predict.py

示例14: train

 def train(self, trainfile_name):
   train_X, train_Y, num_classes = self.make_data(trainfile_name)
   accuracies = []
   fscores = []
   if self.cv:
     num_points = train_X.shape[0]
     fol_len = num_points / self.folds
     rem = num_points % self.folds
     X_folds = numpy.split(train_X, self.folds) if rem == 0 else numpy.split(train_X[:-rem], self.folds)
     Y_folds = numpy.split(train_Y, self.folds) if rem == 0 else numpy.split(train_Y[:-rem], self.folds)
     for i in range(self.folds):
       train_folds_X = []
       train_folds_Y = []
       for j in range(self.folds):
         if i != j:
           train_folds_X.append(X_folds[j])
           train_folds_Y.append(Y_folds[j])
       train_fold_X = numpy.concatenate(train_folds_X)
       train_fold_Y = numpy.concatenate(train_folds_Y)
       classifier = self.fit_model(train_fold_X, train_fold_Y, num_classes)
       predictions = self.classify(classifier, X_folds[i])
       accuracy, weighted_fscore, _ = self.evaluate(Y_folds[i], predictions)
       accuracies.append(accuracy)
       fscores.append(weighted_fscore)
     accuracies = numpy.asarray(accuracies)
     fscores = numpy.asarray(fscores)
     print >>sys.stderr, "Accuracies:", accuracies
     print >>sys.stderr, "Average: %0.4f (+/- %0.4f)"%(accuracies.mean(), accuracies.std() * 2)
     print >>sys.stderr, "Fscores:", fscores
     print >>sys.stderr, "Average: %0.4f (+/- %0.4f)"%(fscores.mean(), fscores.std() * 2)
   self.classifier = self.fit_model(train_X, train_Y, num_classes)
   cPickle.dump(classifier, open(self.trained_model_name, "wb"))
   #pickle.dump(tagset, open(self.stored_tagset, "wb"))
   print >>sys.stderr, "Done"
开发者ID:BMKEG,项目名称:exp-parser,代码行数:34,代码来源:nn_classifier.py

示例15: conf2yap

def conf2yap(conf_fname, yap_filename):
    print("Yap file : ", yap_filename)
    positions, radii, meta = clff.read_conf_file(conf_fname)
    positions[:, 0] -= float(meta['lx'])/2
    positions[:, 1] -= float(meta['ly'])/2
    positions[:, 2] -= float(meta['lz'])/2

    if 'np_fixed' in meta:
        # for conf with fixed particles
        split_line = len(positions) - int(meta['np_fixed'])
        pos_mobile, pos_fixed = np.split(positions, [split_line])
        rad_mobile, rad_fixed = np.split(radii, [split_line])
        yap_out = pyp.layer_switch(3)
        yap_out = pyp.add_color_switch(yap_out, 3)
        yap_out = np.row_stack((yap_out,
                                particles_yaparray(pos_mobile, rad_mobile)))
        yap_out = pyp.add_layer_switch(yap_out, 4)
        yap_out = pyp.add_color_switch(yap_out, 4)
        yap_out = np.row_stack((yap_out,
                                particles_yaparray(pos_fixed, rad_fixed)))
    else:
        yap_out = pyp.layer_switch(3)
        yap_out = pyp.add_color_switch(yap_out, 3)
        yap_out = np.row_stack((yap_out,
                                particles_yaparray(positions, radii)))

    pyp.savetxt(yap_filename, yap_out)
开发者ID:rmari,项目名称:LF_DEM,代码行数:27,代码来源:yapgen.py


注:本文中的numpy.split函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。