本文整理汇总了Python中numpy.savez_compressed函数的典型用法代码示例。如果您正苦于以下问题:Python savez_compressed函数的具体用法?Python savez_compressed怎么用?Python savez_compressed使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了savez_compressed函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: save_data
def save_data(self, fmt='npy', dest='.'):
if not self.has_saved:
#must specify a unique new directory name for this output
if not os.path.exists(dest):
os.makedirs(dest)
sim_dir = os.path.join(dest,self.fname)
i = 1
while os.path.exists(sim_dir):
sim_dir = os.path.join(dest,self.fname,'-%i'%i)
i += 1
os.mkdir(sim_dir)
self.sim_dir = sim_dir
self.has_saved = True
fname = os.path.join(self.sim_dir, self.fname)
params = {k:self.__dict__[k] for k in self.__dict__ if k not in ['cells','neuropil','t','mov','mov_nofilter','stim','mov_nojit','mov_filtered']}
cells = [cell.get_dict() for cell in self.cells]
npil = np.array([self.neuropil.get_dict()])
t = self.__dict__['t']
stim = self.__dict__['stim']
movie = np.array([{k:self.__dict__[k] for k in ['mov','mov_nofilter','mov_nojit','mov_filtered']}])
if fmt in ['npy','npz','numpy','n']:
np.savez_compressed(fname, params=params, cells=cells, neuropil=npil, time=t, stim=stim, movie=movie)
elif fmt in ['mat','matlab','m']:
matdic = {'params':params, 'cells':cells, 'neuropil':npil, 'time':t, 'stim':stim, 'movie':movie}
savemat(fname, matdic)
示例2: save_npz
def save_npz(file, obj, compression=True):
"""Saves an object to the file in NPZ format.
This is a short-cut function to save only one object into an NPZ file.
Args:
file (str or file-like): Target file to write to.
obj: Object to be serialized. It must support serialization protocol.
compression (bool): If ``True``, compression in the resulting zip file
is enabled.
.. seealso::
:func:`chainer.serializers.load_npz`
"""
if isinstance(file, six.string_types):
with open(file, 'wb') as f:
save_npz(f, obj, compression)
return
s = DictionarySerializer()
s.save(obj)
if compression:
numpy.savez_compressed(file, **s.target)
else:
numpy.savez(file, **s.target)
示例3: save_images_to_disk
def save_images_to_disk():
print('Disk-saving thread active...')
n = 0
frameTimeOutputFile = open(planOutputPath+'frameTimes.txt','w')
frameTimeOutputFile.write('frameCount\t n\t frameCond\t frameT\t interval\n')
currdict = im_queue.get()
while currdict is not None:
frameTimeOutputFile.write('%i\t %i\t %i\t %s\t %s\n' % (int(currdict['frame']),n,int(currdict['cond']),currdict['time'],currdict['interval']))
if save_as_tiff:
fname = '%s/frame%i.tiff' % (dataOutputPath,int(currdict['frame']))
tiff = TIFF.open(fname, mode='w')
tiff.write_image(currdict['im'])
tiff.close()
elif save_as_npz:
np.savez_compressed('%s/test%d.npz' % (output_path, n), currdict['im'])
else:
fname = '%s/frame%i.tiff' % (dataOutputPath,int(currdict['frame']),)
with open(fname, 'wb') as f:
pkl.dump(currdict, f, protocol=pkl.HIGHEST_PROTOCOL)
# print 'DONE SAVING FRAME: ', currdict['frame'], n #fdict
n += 1
currdict = im_queue.get()
disk_writer_alive = False
#frameTimeOutputFile.close()
print('Disk-saving thread inactive...')
示例4: do_gen
def do_gen(content, decision):
SER_S = np.empty((tau_range.shape[0], phi_range.shape[0]))
SER_U = np.empty((tau_range.shape[0], phi_range.shape[0]))
for tau_idx, tau in enumerate(tau_range):
print("tau = %.2f" % (tau))
# symbols of (synch"ed, unsynch"ed) sender
if content in ("same",):
tmp_syms = np.random.randint(16, size=nsyms + 2)
send_syms = [tmp_syms, tmp_syms]
else:
send_syms = np.random.randint(16, size=2 * (nsyms + 2)).reshape(2, nsyms + 2)
send_syms_s, send_syms_u = send_syms[0][1:-1], send_syms[1][1:-1]
send_chips = pt.map_chips(*send_syms)
RECV_CHIPS_I = pt.detect_i(send_chips[:2], send_chips[2:], phi_range, tau, As, Au)
RECV_CHIPS_Q = pt.detect_q(send_chips[:2], send_chips[2:], phi_range, tau, As, Au)
for phi_idx in range(len(phi_range)):
recv_chips = np.empty(2 * RECV_CHIPS_I.shape[0])
recv_chips[::2] = RECV_CHIPS_I[:, phi_idx]
recv_chips[1::2] = RECV_CHIPS_Q[:, phi_idx]
# slice bits to simulate hard decision decoder
if decision in ("hard",):
recv_chips = np.sign(recv_chips)
recv_syms = pt.detect_syms_corr(recv_chips)[1:-1]
SER_S[tau_idx, phi_idx] = sum(recv_syms != send_syms_s) / (1.0 * len(recv_syms))
SER_U[tau_idx, phi_idx] = sum(recv_syms != send_syms_u) / (1.0 * len(recv_syms))
np.savez_compressed("data/ser_Au%.2f_%s_%s_v2.npz" % (Au, content, decision), SER_S=SER_S, SER_U=SER_U, **settings)
示例5: main
def main():
if len(sys.argv) < 2:
print("Not enough arguments supplied")
return
datapath = sys.argv[1]
train_image_path = os.path.join(datapath, "train_images.npz")
test_image_path = os.path.join(datapath, "test_images.npz")
train_cap_path = os.path.join(datapath, "train_labels.txt")
test_cap_path = os.path.join(datapath, "test_labels.txt")
trX, teX, trY, teY = mnist(onehot=False)
print("Generating Appended MNIST Training...")
train_imgs, train_caps = generate_dataset(trX, trY)
print("Generating Appended MNIST Testing...")
test_imgs, test_caps = generate_dataset(teX, teY)
print("Save Training/Testing Images...")
np.savez_compressed(train_image_path, *train_imgs)
np.savez_compressed(test_image_path, *test_imgs)
print("Save Training/Testing Captions...")
with open(train_cap_path, 'w') as train_cap_file:
train_cap_file.writelines(train_caps)
with open(test_cap_path, 'w') as test_cap_file:
test_cap_file.writelines(test_caps)
print("DONE. SUMMARY")
print("# Train Examples: " + str(len(train_imgs)))
print("# Test Examples: " + str(len(test_imgs)))
示例6: main
def main():
if os.path.exists('points.npz'):
print("Loading points from points.npz")
points = np.load('points.npz')['points']
else:
points = get_points()
print("Saving points to points.npz")
np.savez_compressed('points.npz', points=points)
def point_input():
for x, y in points:
yield '%s %s\n' % (x, y)
b_i = []
b_j = []
b_x = []
b_y = []
t1 = time.time()
for line in run_subprocess(('./union',), point_input()):
i, j, x, y = line.split()
b_i.append(int(i))
b_j.append(int(j))
b_x.append(float(x))
b_y.append(float(y))
t2 = time.time()
b_i = np.asarray(b_i)
b_j = np.asarray(b_j)
b_x = np.asarray(b_x)
b_y = np.asarray(b_y)
print("Got %d boundary intersections" % len(b_i) +
" in %.4f s" % (t2 - t1))
np.savez_compressed('boundary.npz', i=b_i, j=b_j, x=b_x, y=b_y)
示例7: save_cb
def save_cb(self, mode):
"""Save image, figure, and plot data arrays."""
# This just defines the basename.
# Extension has to be explicitly defined or things can get messy.
target = Widgets.SaveDialog(
title='Save {0} data'.format(mode)).get_path()
# Save cancelled
if not target:
return
# TODO: This can be a user preference?
fig_dpi = 100
if mode == 'cuts':
# Save as fits file
image = self.fitsimage.get_image()
self.fv.error_wrap(image.save_as_file, target + '.fits')
fig, xarr, yarr = self.cuts_plot.get_data()
elif mode == 'slit':
fig, xarr, yarr = self.slit_plot.get_data()
fig.savefig(target + '.png', dpi=fig_dpi)
numpy.savez_compressed(target + '.npz', x=xarr, y=yarr)
示例8: creator
def creator(path):
archive_path = download.cached_download(url)
train_x = numpy.empty((5, 10000, 3072), dtype=numpy.uint8)
train_y = numpy.empty((5, 10000), dtype=numpy.uint8)
test_y = numpy.empty(10000, dtype=numpy.uint8)
dir_name = '{}-batches-py'.format(name)
with tarfile.open(archive_path, 'r:gz') as archive:
# training set
for i in range(5):
file_name = '{}/data_batch_{}'.format(dir_name, i + 1)
d = pickle.load(archive.extractfile(file_name))
train_x[i] = d['data']
train_y[i] = d['labels']
# test set
file_name = '{}/test_batch'.format(dir_name)
d = pickle.load(archive.extractfile(file_name))
test_x = d['data']
test_y[...] = d['labels'] # copy to array
train_x = train_x.reshape(50000, 3072)
train_y = train_y.reshape(50000)
numpy.savez_compressed(path, train_x=train_x, train_y=train_y,
test_x=test_x, test_y=test_y)
return {'train_x': train_x, 'train_y': train_y,
'test_x': test_x, 'test_y': test_y}
示例9: save_vocab
def save_vocab(self, path_count, path_vocab, word_limit=100000):
""" Saves the master vocabulary into a file.
"""
# reserve space for 10 special tokens
words = OrderedDict()
for token in SPECIAL_TOKENS:
# store -1 instead of np.inf, which can overflow
words[token] = -1
# sort words by frequency
desc_order = OrderedDict(sorted(self.master_vocab.items(),
key=lambda kv: kv[1], reverse=True))
words.update(desc_order)
# use encoding of up to 30 characters (no token conversions)
# use float to store large numbers (we don't care about precision loss)
np_vocab = np.array(words.items(),
dtype=([('word','|S30'),('count','float')]))
# output count for debugging
counts = np_vocab[:word_limit]
np.savez_compressed(path_count, counts=counts)
# output the index of each word for easy lookup
final_words = OrderedDict()
for i, w in enumerate(words.keys()[:word_limit]):
final_words.update({w:i})
with open(path_vocab, 'w') as f:
f.write(json.dumps(final_words, indent=4, separators=(',', ': ')))
示例10: split_dataset
def split_dataset(labels, indices_save_path, classes_save_path, train_size=0.8,
test_size=0.1, validation_size=0.1, min_count=3):
classes = {}
print('Getting YAGO labels', file=sys.stderr, flush=True)
yago_labels = [label[1] for label in labels]
print('Getting filtered classes', file=sys.stderr, flush=True)
filtered_classes = {l for l, v in Counter(yago_labels).items() if v >= min_count}
print('Getting filtered indices', file=sys.stderr, flush=True)
filtered_indices = np.array([i for i, l in enumerate(yago_labels)
if (l != 'O' and l in filtered_classes) or (l == 'O')], dtype=np.int32)
strat_split = StratifiedSplitter(np.array(yago_labels), filtered_indices)
print('Splitting the dataset', file=sys.stderr, flush=True)
train_indices, test_indices, validation_indices = strat_split.get_splitted_dataset_indices(
train_size=train_size, test_size=test_size, validation_size=validation_size)
print('Saving indices to file %s' % indices_save_path, file=sys.stderr, flush=True)
np.savez_compressed(indices_save_path, train_indices=train_indices, test_indices=test_indices,
validation_indices=validation_indices, filtered_indices=filtered_indices)
for idx, iteration in enumerate(CL_ITERATIONS[::-1]):
print('Getting classes for iteration %s' % iteration, file=sys.stderr, flush=True)
replaced_labels = [label[idx] for label in labels]
classes[iteration] = np.unique(np.array(replaced_labels)[filtered_indices], return_counts=True)
print('Saving classes to file %s' % classes_save_path, file=sys.stderr, flush=True)
with open(classes_save_path, 'wb') as f:
pickle.dump(classes, f)
示例11: feature_selection
def feature_selection(dataset, features_names, matrix_file_path, features_file_path, max_features=12000):
print('Calculating variance of dataset features', file=sys.stderr, flush=True)
dataset = csc_matrix(dataset)
square_dataset = dataset.copy()
square_dataset.data **= 2
variance = np.asarray(square_dataset.mean(axis=0) - np.square(dataset.mean(axis=0)))[0]
print('Getting top %d features' % max_features, file=sys.stderr, flush=True)
top_features = np.argsort(variance)[::-1][:max_features]
min_variance = variance[top_features][-1]
print('Min variance: %.2e. Getting features over min variance.' % min_variance, file=sys.stderr, flush=True)
valid_indices = np.where(variance > min_variance)[0]
print('Final features count: %d/%d' % (valid_indices.shape[0], dataset.shape[1]), file=sys.stderr, flush=True)
print('Filtering features', file=sys.stderr, flush=True)
dataset = csr_matrix(dataset[:, valid_indices])
print('Saving dataset to file {}'.format(matrix_file_path), file=sys.stderr, flush=True)
np.savez_compressed(matrix_file_path, data=dataset.data, indices=dataset.indices,
indptr=dataset.indptr, shape=dataset.shape)
print('Saving filtered features names', file=sys.stderr, flush=True)
features_names = np.array(features_names)
filtered_features_names = list(features_names[valid_indices])
with open(features_file_path, 'wb') as f:
pickle.dump(filtered_features_names, f)
示例12: process_glove
def process_glove(args, vocab_list, save_path, size=4e5, random_init=True):
"""
:param vocab_list: [vocab]
:return:
"""
if not gfile.Exists(save_path + ".npz"):
glove_path = os.path.join(args.glove_dir, "glove.6B.{}d.txt".format(args.glove_dim))
if random_init:
glove = np.random.randn(len(vocab_list), args.glove_dim)
else:
glove = np.zeros((len(vocab_list), args.glove_dim))
found = 0
with open(glove_path, 'r') as fh:
for line in tqdm(fh, total=size):
array = line.lstrip().rstrip().split(" ")
word = array[0]
vector = list(map(float, array[1:]))
if word in vocab_list:
idx = vocab_list.index(word)
glove[idx, :] = vector
found += 1
if word.capitalize() in vocab_list:
idx = vocab_list.index(word.capitalize())
glove[idx, :] = vector
found += 1
if word.upper() in vocab_list:
idx = vocab_list.index(word.upper())
glove[idx, :] = vector
found += 1
print("{}/{} of word vocab have corresponding vectors in {}".format(found, len(vocab_list), glove_path))
np.savez_compressed(save_path, glove=glove)
print("saved trimmed glove matrix at: {}".format(save_path))
示例13: align
def align(movie_data, options, args, lrh):
print 'PCA'
nvoxel = movie_data.shape[0]
nTR = movie_data.shape[1]
nsubjs = movie_data.shape[2]
align_algo = args.align_algo
nfeature = args.nfeature
if not os.path.exists(options['working_path']):
os.makedirs(options['working_path'])
# zscore the data
bX = np.zeros((nsubjs*nvoxel,nTR))
for m in range(nsubjs):
bX[m*nvoxel:(m+1)*nvoxel,:] = stats.zscore(movie_data[:,:,m].T ,axis=0, ddof=1).T
del movie_data
U, s, VT = np.linalg.svd(bX, full_matrices=False)
bW = U[:,range(nfeature)]
ES = np.diag(s).dot(VT)
ES = ES[:nfeature,:]
niter = 10
# initialization when first time run the algorithm
np.savez_compressed(options['working_path']+align_algo+'_'+lrh+'_'+str(niter)+'.npz',\
bW = bW, ES=ES, niter=niter)
return niter
示例14: main
def main():
desc = 'Applies summarize_scores on a given score matrix'
parser = argparse.ArgumentParser(description = desc)
parser.add_argument('infile')
parser.add_argument('idfile', help = 'File with region ids')
parser.add_argument('outfile')
args = parser.parse_args()
data = np.load(args.infile)
scores = data['scores']
motif_names = data['motif_names']
data.close()
is_score = np.array([not re.search('_scores', m) is None for m in motif_names], np.bool)
is_count = np.array([not s for s in is_score], np.bool)
region_ids = []
with open(args.idfile, 'r') as infile:
for line in infile:
if line.strip() == '.':
region_ids.append(None)
else:
region_ids.append(line.strip())
scores_tmp, new_names = summarize_scores(scores[:, is_score], region_ids, np.max)
counts_tmp, new_names_tmp = summarize_scores(scores[:, is_count], region_ids, np.sum)
motif_names = np.array(motif_names)
motif_names = list(np.concatenate((motif_names[is_score], motif_names[is_count])))
scores = np.concatenate((scores_tmp, counts_tmp), axis = 1)
np.savez_compressed(args.outfile, scores = scores, motif_names = motif_names,
region_names = new_names)
示例15: _storeresult
def _storeresult(result):
"""Test function to try various ways to store a tuple of numpy arrays.
"""
if False:
# Try numpy
npy.savez_compressed('store-npy.npz', *result)
if False:
# Try h5py
import h5py
store = h5py.File("store-h5py.hdf5", "w", compression='lzf')
store['numoccs'] = numoccs
store['occcounts'] = occcounts
store['childoccfreqs'] = childoccfreqs
store['numunique'] = numunique
store['uniquecounts'] = childuniquefreqs
store['childuniquefreqs'] = childuniquefreqs
if False:
# Try PyTables
import tables
store = tables.open_file(
'store-pytables.hdf5', mode="w",
filters=tables.Filters(complib='bzip2', complevel=6))
def storearray(name, x):
atom = tables.Atom.from_dtype(x.dtype)
ds = store.createCArray(store.root, name, atom, x.shape)
ds[:] = x
storearray('numoccs', numoccs)
storearray('occcounts', occcounts)
storearray('childoccfreqs', childoccfreqs)
storearray('numunique', numunique)
storearray('uniquecounts', childuniquefreqs)
storearray('childuniquefreqs', childuniquefreqs)
store.close()