本文整理汇总了Python中numpy.savez函数的典型用法代码示例。如果您正苦于以下问题:Python savez函数的具体用法?Python savez怎么用?Python savez使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了savez函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: run_experiment
def run_experiment():
pattern = re.compile("lda_([0-9]+)\.pb")
data_dir = "data"
files = [
(re.search(pattern, f).group(1), join(data_dir, f))
for f in listdir(data_dir)
if isfile(join(data_dir, f)) and re.match(pattern, f)
]
cmd_str = "peircebayes {} -n 100 -m lda -t -s {}"
cmd_str2 = "peircebayes {} -n 100 -m lda -t -s {} -a cgs"
np.random.seed(1234)
start = time.time()
for i, f in files:
print i
# sample 10 times
for j, seed in enumerate(np.random.choice(5000, 10, replace=False) + 1):
call_cmd(cmd_str.format(f, seed))
phi = np.load("/tmp/peircebayes/avg_samples.npz")["arr_1"]
np.savez(join(data_dir, "phi_{}_{}".format(i, j)), **{"phi": phi})
call_cmd("cp /tmp/peircebayes/lls.npz data/lls_{}_{}.npz".format(i, j))
call_cmd(cmd_str2.format(f, seed))
call_cmd("cp /tmp/peircebayes/lls.npz data/lls_cgs_{}_{}.npz".format(i, j))
end = time.time()
with open("data/time_pb", "w") as f:
f.write(str(end - start))
cmd_str_r = "Rscript run_lda.R"
start = time.time()
call_cmd(cmd_str_r)
end = time.time()
with open("data/time_r", "w") as f:
f.write(str(end - start))
示例2: save
def save(self, npz_file):
'''Serialize to object to an npz file.'''
np.savez(npz_file,
chrom=self.chrom,
sample_call_rate_full=self.sample.call_rate_full,
sample_concordance=self.sample.concordance,
sample_call_rate_partial=self.sample.call_rate_partial,
sample_samples=self.sample.samples,
snp_call_rate_imputed_full=self.snp.call_rate_imputed_full,
snp_concordance_imputed_het=self.snp.concordance_imputed_het,
snp_call_rate_imputed_partial=self.snp.call_rate_imputed_partial,
snp_info=self.snp.info,
snp_call_rate_training=self.snp.call_rate_training,
snp_snps=self.snp.snps,
snp_concordance_imputed=self.snp.concordance_imputed,
snp_x=self.snp.x,
snp_maf=self.snp.maf,
maf_call_rate_imputed=self.maf.call_rate_imputed,
maf_concordance_imputed_het=self.maf.concordance_imputed_het,
maf_call_rate_training=self.maf.call_rate_training,
maf_maf=self.maf.maf,
maf_concordance_imputed=self.maf.concordance_imputed,
# sample_index=self.sample_index,
# pedigree=np.array([self.pedigree])
)
示例3: save
def save(self):
numpy.savez('timing.npz',
train=self.train_timing,
valid=self.valid_timing,
test=self.test_timing,
k=self.k)
self.model.save()
示例4: recordDVM
def recordDVM(filename='voltdata.npz',sun=False,moon=False,recordLength=np.inf,verbose=True):
ra = 0
dec = 0
raArr = np.ndarray(0)
decArr = np.ndarray(0)
lstArr = np.ndarray(0)
jdArr = np.ndarray(0)
voltArr = np.ndarray(0)
startTime = time.time()
while np.less(time.time()-startTime,recordLength):
if sun:
raDec = sunPos()
ra = raDec[0]
dec = raDec[1]
startSamp = time.time()
currVolt = getDVMData()
currLST = getLST()
currJulDay = getJulDay()
raArr = np.append(raArr,ra)
decArr = np.append(decArr,ra)
voltArr = np.append(voltArr,currVolt)
lstArr = np.append(lstArr,currLST)
jdArr = np.append(jdArr,currJulDay)
if verbose:
print 'Measuring voltage: ' + str(currVolt) + ' (LST: ' + str(currLST) +' ' + time.asctime() + ')'
np.savez(filename,ra=raArr,dec=decArr,jd=jdArr,lst=lstArr,volts=voltArr)
sys.stdout.flush()
time.sleep(np.max([0,1.0-(time.time()-startSamp)]))
示例5: saveEnsemble
def saveEnsemble(ensemble, filename=None, **kwargs):
"""Save *ensemble* model data as :file:`filename.ens.npz`. If *filename*
is ``None``, title of the *ensemble* will be used as the filename, after
white spaces in the title are replaced with underscores. Extension is
:file:`.ens.npz`. Upon successful completion of saving, filename is
returned. This function makes use of :func:`numpy.savez` function."""
if not isinstance(ensemble, Ensemble):
raise TypeError('invalid type for ensemble, {0}'
.format(type(ensemble)))
if len(ensemble) == 0:
raise ValueError('ensemble instance does not contain data')
dict_ = ensemble.__dict__
attr_list = ['_title', '_confs', '_weights', '_coords']
if isinstance(ensemble, PDBEnsemble):
attr_list.append('_labels')
attr_list.append('_trans')
if filename is None:
filename = ensemble.getTitle().replace(' ', '_')
attr_dict = {}
for attr in attr_list:
value = dict_[attr]
if value is not None:
attr_dict[attr] = value
attr_dict['_atoms'] = np.array([dict_['_atoms'], 0])
filename += '.ens.npz'
ostream = openFile(filename, 'wb', **kwargs)
np.savez(ostream, **attr_dict)
ostream.close()
return filename
示例6: test_npzfile_dict
def test_npzfile_dict():
s = StringIO.StringIO()
x = np.zeros((3, 3))
y = np.zeros((3, 3))
np.savez(s, x=x, y=y)
s.seek(0)
z = np.load(s)
assert 'x' in z
assert 'y' in z
assert 'x' in z.keys()
assert 'y' in z.keys()
for f, a in z.iteritems():
assert f in ['x', 'y']
assert_equal(a.shape, (3, 3))
assert len(z.items()) == 2
for f in z:
assert f in ['x', 'y']
assert 'x' in list(z.iterkeys())
示例7: save
def save(destination, train, valid, test, vocab):
np.savez(destination,
vocab=np.array(vocab),
train=train,
valid=valid,
test=test,
vocab_size=len(vocab))
示例8: get_flat_distribution
def get_flat_distribution(y):
start = time.time()
logging.debug(y.shape)
rows,cols = y.shape
x_min = 0
x_max = 2500
bin_width = 100
n_bins = int((x_max-x_min)/bin_width)
lst = [bin(i,i+bin_width) for i in np.arange(x_min,x_max,bin_width)]
new_array = np.zeros((1,2))
new_array_list = []
for row in range(rows):
if row == 0:
new_array_list.append(y[row])
[lst[i].in_bin(y[0][0][0]) for i in range(n_bins)]
else:
for i in range(n_bins):
if(lst[i].in_bin(y[row][0][0]) and not lst[i].full):
new_array_list.append(y[row])
if(row%1000000 == 0):
logging.debug(row)
stop = time.time()
logging.debug("time elapsed running through rows"+str(stop - start))
new_array = np.vstack(new_array_list)
stop = time.time()
logging.debug("time elapsed stacking"+str(stop - start))
logging.debug("new array shape:")
logging.debug(new_array.shape)
rows,cols = new_array.shape
[lst[i].print_object() for i in range(n_bins)]
np.savez(file_name+"flat", new_array)
return new_array
示例9: write_potential
def write_potential(N=2.5, pphw=20, amplitude=1.0, sigmax=1e-1, sigmay=1e-1,
L=100., W=1.0, x_R0=0.05, y_R0=0.4, loop_type='Bell',
init_phase=0.0, shape='RAP', plot=True,
plot_dimensions=False, direction='right',
boundary_only=False, with_boundary=False, boundary_phase=0.0,
theta=0.0, smearing=False, verbose=True, linearized=False):
p = Potential(N=N, pphw=pphw, amplitude=amplitude, sigmax=sigmax,
sigmay=sigmay, x_R0=x_R0, y_R0=y_R0, init_phase=init_phase,
shape=shape, L=L, W=W, loop_type=loop_type,
direction=direction, boundary_only=boundary_only,
with_boundary=with_boundary, theta=theta,
verbose=verbose, linearized=linearized)
if not boundary_only:
imag, imag_vector = p.imag, p.imag_vector
real, real_vector = p.real, p.real_vector
X, Y = p.X, p.Y
if not boundary_only:
if plot:
import matplotlib.pyplot as plt
if plot_dimensions:
plt.figure(figsize=(L, W))
plt.pcolormesh(X, Y, imag, cmap='RdBu_r')
plt.savefig("imag.png")
plt.pcolormesh(X, Y, real, cmap='RdBu_r')
plt.savefig("real.png")
np.savetxt("potential_imag.dat", zip(xrange(len(imag_vector)), imag_vector),
fmt=["%i", "%.12f"])
np.savetxt("potential_real.dat", zip(xrange(len(real_vector)), real_vector),
fmt=["%i", "%.12f"])
if shape != 'science':
np.savez("potential_imag_xy.npz", X=X, Y=Y, P=imag_vector,
X_nodes=p.xnodes, Y_nodes=p.ynodes,
sigmax=sigmax, sigmay=sigmay)
if shape == 'RAP':
xi_lower, xi_upper = p.WG.get_boundary(theta=theta, smearing=smearing,
boundary_phase=boundary_phase)
# set last element to 0 (xi_lower) or W (xi_upper)
print "WARNING: end of boundary not set zero!"
# xi_lower[-1] = 0.0
# xi_upper[-1] = W
np.savetxt("upper.boundary", zip(xrange(p.nx), xi_upper))
np.savetxt("lower.boundary", zip(xrange(p.nx), xi_lower))
eps, delta = p.WG.get_cycle_parameters()
np.savetxt("boundary.eps_delta", zip(eps, delta))
if shape == 'RAP_TQD':
eps_prime, delta_prime, theta_prime = p.WG.get_quantum_driving_parameters()
xi_lower, xi_upper = p.WG.get_boundary(eps=eps_prime, delta=delta_prime,
theta=theta_prime,
smearing=smearing)
# set last element to 0 (xi_lower) or W (xi_upper)
xi_lower[-1] = 0.0
xi_upper[-1] = W
np.savetxt("upper.boundary", zip(xrange(p.nx), xi_upper))
np.savetxt("lower.boundary", zip(xrange(p.nx), xi_lower))
np.savetxt("boundary.eps_delta_theta", zip(eps_prime, delta_prime, theta_prime))
示例10: __call__
def __call__(self, u, x, t, n):
# Save solution u to a file using numpy.savez
if self.filename is not None:
name = 'u%04d' % n # array name
kwargs = {name: u}
fname = '.' + self.filename + '_' + name + '.dat'
np.savez(fname, **kwargs)
self.t.append(t[n]) # store corresponding time value
if n == 0: # save x once
np.savez('.' + self.filename + '_x.dat', x=x)
# Animate
if n % self.skip_frame != 0:
return
# Plot u and mark medium x=x_L and x=x_R
x_L, x_R = self.medium
umin, umax = self.yaxis
title = 'Nx=%d' % (x.size-1)
if self.title:
title = self.title + ' ' + title
if self.backend is None:
# native matplotlib animation
if n == 0:
self.plt.ion()
self.lines = self.plt.plot(
x, u, 'r-',
[x_L, x_L], [umin, umax], 'k--',
[x_R, x_R], [umin, umax], 'k--')
self.plt.axis([x[0], x[-1],
self.yaxis[0], self.yaxis[1]])
self.plt.xlabel('x')
self.plt.ylabel('u')
self.plt.title(title)
self.plt.text(0.75, 1.0, 'C=0.25')
self.plt.text(0.32, 1.0, 'C=1')
self.plt.legend(['t=%.3f' % t[n]])
else:
# Update new solution
self.lines[0].set_ydata(u)
self.plt.legend(['t=%.3f' % t[n]])
self.plt.draw()
else:
# scitools.easyviz animation
self.plt.plot(x, u, 'r-',
[x_L, x_L], [umin, umax], 'k--',
[x_R, x_R], [umin, umax], 'k--',
xlabel='x', ylabel='u',
axis=[x[0], x[-1],
self.yaxis[0], self.yaxis[1]],
title=title,
show=self.screen_movie)
# pause
if t[n] == 0:
time.sleep(2) # let initial condition stay 2 s
else:
if self.pause is None:
pause = 0.2 if u.size < 100 else 0
time.sleep(pause)
self.plt.savefig('frame_%04d.png' % (n))
示例11: packageMergedSpec
def packageMergedSpec():
dataDir = getPackageDir('SIMS_SKYBRIGHTNESS_DATA')
outDir = os.path.join(dataDir, 'ESO_Spectra/MergedSpec')
# A large number of the background components only depend on Airmass, so we can merge those together
npzs = ['LowerAtm/Spectra.npz',
'ScatteredStarLight/scatteredStarLight.npz',
'UpperAtm/Spectra.npz']
files = [os.path.join(dataDir, 'ESO_Spectra', npz) for npz in npzs]
temp = np.load(files[0])
wave = temp['wave'].copy()
spec = temp['spec'].copy()
spec['spectra'] = spec['spectra']*0.
spec['mags'] = spec['mags']*0.
for filename in files:
restored = np.load(filename)
spec['spectra'] += restored['spec']['spectra']
try:
flux = 10.**(-0.4*(restored['spec']['mags']-np.log10(3631.)))
except:
import pdb ; pdb.set_trace()
flux[np.where(restored['spec']['mags'] == 0.)] = 0.
spec['mags'] += flux
spec['mags'] = -2.5*np.log10(spec['mags'])+np.log10(3631.)
np.savez(os.path.join(outDir,'mergedSpec.npz'), spec=spec, wave=wave, filterWave=temp['filterWave'])
示例12: save
def save(self, path):
savedir = smartutils.create_folder(pjoin(path, type(self).__name__))
smartutils.save_dict_to_json_file(pjoin(savedir, "hyperparams.json"), self.hyperparameters)
params = {param.name: param.get_value() for param in self.parameters}
assert len(self.parameters) == len(params) # Implies names are all unique.
np.savez(pjoin(savedir, "params.npz"), **params)
示例13: convert_npys_to_npzs
def convert_npys_to_npzs(npy_files, arr_key, output_dir):
"""Create a number of NPY files.
Parameters
----------
npy_files = list of str
Paths to the created set of files.
arr_key : str
Name to write the array under in the npz archive.
output_dir : str
Path under which to write data.
Returns
-------
npz_files : list of str
Newly created NPZ files.
"""
npz_files = []
for fpath in npy_files:
data = {arr_key: np.load(fpath)}
npz_path = os.path.join(output_dir, "{}.npz".format(filebase(fpath)))
np.savez(npz_path, **data)
npz_files.append(npz_path)
return npz_files
示例14: save
def save(self, file):
"""
Saves data from a CorpusSent object as an `npz` file.
:param file: Designates the file to which to save data. See
`numpy.savez` for further details.
:type file: str-like or file-like object
:returns: None
:See Also: :class: Corpus, :meth: Corpus.save, :meth: numpy.savez
"""
print 'Saving corpus as', file
arrays_out = dict()
arrays_out['corpus'] = self.corpus
arrays_out['words'] = self.words
arrays_out['sentences'] = self.sentences
arrays_out['context_types'] = np.asarray(self.context_types)
for i,t in enumerate(self.context_data):
key = 'context_data_' + self.context_types[i]
arrays_out[key] = t
np.savez(file, **arrays_out)
示例15: save
def save(self, directory, suffix=""):
fname = "mlp_" + ("_".join([str(l) for l in self.__layer_sizes])) + suffix + ".npz"
path = os.path.join(directory, fname)
with open(path, "w") as f:
mats_to_save = [np.array(self.__layer_sizes)] + self.__W + self.__b
np.savez(f, *mats_to_save)
return path