本文整理汇总了Python中numpy.s函数的典型用法代码示例。如果您正苦于以下问题:Python s函数的具体用法?Python s怎么用?Python s使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了s函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: traj_des
def traj_des(self,t):
from numpy import cos as c
from numpy import sin as s
r = self.r
w = self.w
p = r*w**0*numpy.array([ c(w*t),-s(w*t),0.0]);
v = r*w**1*numpy.array([-s(w*t),-c(w*t),0.0]);
a = r*w**2*numpy.array([-c(w*t), s(w*t),0.0]);
j = r*w**3*numpy.array([ s(w*t), c(w*t),0.0]);
s = r*w**4*numpy.array([ c(w*t),-s(w*t),0.0]);
return numpy.concatenate([p,v,a,j,s])
示例2: _get_untransformed_point
def _get_untransformed_point(self, time):
t = time
r = self.radius
w = self.angular_velocity
rot = self.rotation
off = self.offset
p = numpy.zeros(4)
v = numpy.zeros(4)
a = numpy.zeros(4)
j = numpy.zeros(4)
sn = numpy.zeros(4)
cr = numpy.zeros(4)
p[0:3] = r*(numpy.array([c(w * t), -s(w * t), 0.0])-numpy.array([1.0, 0.0, 0.0]))
v[0:3] = r * w**1 * numpy.array([-s(w * t), -c(w * t), 0.0])
a[0:3] = r * w**2 * numpy.array([-c(w * t), s(w * t), 0.0])
j[0:3] = r * w**3 * numpy.array([s(w * t), c(w * t), 0.0])
sn[0:3] = r * w**4 * numpy.array([c(w * t), -s(w * t), 0.0])
cr[0:3] = r * w**5 * numpy.array([-s(w * t), -c(w * t), 0.0])
p[3] = -numpy.arctan2(s(w*t),c(w*t))
v[3] = -w
a[3] = 0.0
j[3] = 0.0
sn[3] = 0.0
cr[3] = 0.0
return p, v, a, j, sn, cr
示例3: J
def J(self):
ixx = self.Ixx
iyy = self.Iyy
izz = self.Izz
th = self.theta[-1]
ph = self.phi[-1]
j11 = ixx
j12 = 0
j13 = -ixx * s(th)
j21 = 0
j22 = iyy*(c(ph)**2) + izz * s(ph)**2
j23 = (iyy-izz)*c(ph)*s(ph)*c(th)
j31 = -ixx*s(th)
j32 = (iyy-izz)*c(ph)*s(ph)*c(th)
j33 = ixx*(s(th)**2) + iyy*(s(th)**2)*(c(th)**2) + izz*(c(ph)**2)*(c(th)**2)
return array([
[j11, j12, j13],
[j21, j22, j23],
[j31, j32, j33]
])
示例4: traj_des
def traj_des(t):
# p = numpy.array([0.6,0.0,0.0]);
# v = numpy.array([0.0,0.0,0.0]);
# a = numpy.array([0.0,0.0,0.0]);
# j = numpy.array([0.0,0.0,0.0]);
# s = numpy.array([0.0,0.0,0.0]);
from numpy import cos as c
from numpy import sin as s
r = 0.0
w = 0.0
p = r*w**0*numpy.array([ c(w*t), s(w*t),0.0]);
v = r*w**1*numpy.array([-s(w*t), c(w*t),0.0]);
a = r*w**2*numpy.array([-c(w*t),-s(w*t),0.0]);
j = r*w**3*numpy.array([ s(w*t),-c(w*t),0.0]);
s = r*w**4*numpy.array([ c(w*t), s(w*t),0.0]);
return concatenate([p,v,a,j,s])
开发者ID:KTH-AEROWORKS,项目名称:sml_under_development,代码行数:20,代码来源:LoadTransportController_Some_Scenarios.py
示例5: J
def J(ph,th):
global Ixx
global Iyy
global Izz
return array([
[Ixx , 0 , -Ixx * s(th) ],
[0 , Iyy*(c(ph)**2) + Izz * s(ph)**2 , (Iyy-Izz)*c(ph)*s(ph)*c(th) ],
[-Ixx*s(th) , (Iyy-Izz)*c(ph)*s(ph)*c(th) , Ixx*(s(th)**2) + Iyy*(s(th)**2)*(c(th)**2) + Izz*(c(ph)**2)*(c(th)**2)]
])
示例6: Rz
def Rz(tt):
return numpy.array([[c(tt),-s(tt),0.0],[s(tt),c(tt),0.0],[0.0,0.0,1]])
开发者ID:KTH-AEROWORKS,项目名称:sml_under_development,代码行数:3,代码来源:LoadTransportController_Some_Scenarios.py
示例7: Rx
def Rx(tt):
return numpy.array([[1.0,0.0,0.0],[0.0,c(tt),-s(tt)],[0.0,s(tt),c(tt)]])
开发者ID:KTH-AEROWORKS,项目名称:sml_under_development,代码行数:3,代码来源:LoadTransportController_Some_Scenarios.py
示例8: Ry
def Ry(tt):
return numpy.array([[c(tt),0.0,s(tt)],[0.0,1,0.0],[-s(tt),0.0,c(tt)]])
开发者ID:KTH-AEROWORKS,项目名称:sml_under_development,代码行数:3,代码来源:LoadTransportController_Some_Scenarios.py
示例9: controller
def controller(states,states_d,parameters):
# mass of vehicles (kg)
m = parameters.m
# acceleration due to gravity (m/s^2)
g = parameters.g
# Angular velocities multiplication factor
# Dw = parameters.Dw
# third canonical basis vector
e3 = numpy.array([0.0,0.0,1.0])
#--------------------------------------#
# transported mass: position and velocity
x = states[0:3];
v = states[3:6];
# thrust unit vector and its angular velocity
R = states[6:15];
R = numpy.reshape(R,(3,3))
n = R.dot(e3)
# print(GetEulerAngles(R)*180/3.14)
#--------------------------------------#
# desired quad trajectory
xd = states_d[0:3];
vd = states_d[3:6];
ad = states_d[6:9];
#--------------------------------------#
# position error and velocity error
ep = xd - x
ev = vd - v
u = cmd_di_3D(ep,ev,parameters)
# -----------------------------------------------------------------------------#
# vector of commnads to be sent by the controller
U = numpy.zeros(4)
# -----------------------------------------------------------------------------#
# STABILIZE MODE:APM COPTER
# The throttle sent to the motors is automatically adjusted based on the tilt angle
# of the vehicle (i.e increased as the vehicle tilts over more) to reduce the
# compensation the pilot must fo as the vehicles attitude changes
# -----------------------------------------------------------------------------#
Full_actuation = m*(ad + u + g*e3)
Throttle = numpy.dot(Full_actuation,n)
# this decreases the throtle, which will be increased
Throttle = Throttle*numpy.dot(n,e3)
U[0] = Throttle
#--------------------------------------#
# current euler angles
euler = GetEulerAngles(R)
# current phi and theta
phi = euler[0];
theta = euler[1];
# current psi
psi = euler[2];
#--------------------------------------#
# Rz(psi)*Ry(theta_des)*Rx(phi_des) = n_des
# desired roll and pitch angles
n_des = Full_actuation/numpy.linalg.norm(Full_actuation)
n_des_rot = Rz(-psi).dot(n_des)
sin_phi = -n_des_rot[1]
sin_phi = bound(sin_phi,1,-1)
phi = numpy.arcsin(sin_phi)
U[1] = phi
sin_theta = n_des_rot[0]/c(phi)
sin_theta = bound(sin_theta,1,-1)
cos_theta = n_des_rot[2]/c(phi)
cos_theta = bound(cos_theta,1,-1)
pitch = numpy.arctan2(sin_theta,cos_theta)
U[2] = pitch
#--------------------------------------#
# yaw control: gain
k_yaw = parameters.k_yaw;
# desired yaw: psi_star
psi_star = parameters.psi_star;
psi_star_dot = 0;
psi_dot = psi_star_dot - k_yaw*s(psi - psi_star);
U[3] = 1/c(phi)*(c(theta)*psi_dot - s(phi)*U[2]);
U = Cmd_Converter(U,parameters)
return U
示例10: print
#--------------------------------------------------------------------------#
time = 0.0
# cable length
L = 0.5
#--------------------------------------------------------------------------#
print('Goal to the front')
# initial LOAD position
pL0 = numpy.array([-1.0,0.0,0.0])
# initial LOAD velocity
vL0 = numpy.array([0.0,0.0,0.0])
# initial unit vector
n0 = numpy.array([0.0,s(0.0),c(0.0)])
# initial QUAD position
p0 = pL0 + L*n0
# initial angular velocity
w0 = numpy.array([0.0,0.0,0.0])
# initial quad velocity
v0 = vL0 + L*dot(skew(w0),n0)
# collecting all initial states
states0 = concatenate([pL0,vL0,p0,v0])
statesd0 = traj_des(time)
Controller = Load_Transport_Controller()
out = Controller.output(states0,statesd0)
开发者ID:KTH-AEROWORKS,项目名称:sml_under_development,代码行数:29,代码来源:LoadTransportController_Some_Scenarios.py
示例11: control_block
def control_block(self):
# calculate the integral of the error in position for each direction
self.x_integral_error.append( self.x_integral_error[-1] + (self.x_des - self.x[-1])*self.h )
self.y_integral_error.append( self.y_integral_error[-1] + (self.y_des - self.y[-1])*self.h )
self.z_integral_error.append( self.z_integral_error[-1] + (self.z_des - self.z[-1])*self.h )
# computte the comm linear accelerations needed to move the system from present location to the desired location
self.xacc_comm.append( self.kdx * (self.xdot_des - self.xdot[-1])
+ self.kpx * ( self.x_des - self.x[-1] )
+ self.kddx * (self.xdd_des - self.xddot[-1] )
+ self.kix * self.x_integral_error[-1] )
self.yacc_comm.append( self.kdy * (self.ydot_des - self.ydot[-1])
+ self.kpy * ( self.y_des - self.y[-1] )
+ self.kddy * (self.ydd_des - self.yddot[-1] )
+ self.kiy * self.y_integral_error[-1] )
self.zacc_comm.append( self.kdz * (self.zdot_des - self.zdot[-1])
+ self.kpz * ( self.z_des - self.z[-1] )
+ self.kddz * (self.zdd_des - self.zddot[-1] )
+ self.kiz * self.z_integral_error[-1] )
# need to limit the max linear acceleration that is perscribed by the control law
# as a meaningful place to start, just use the value '10m/s/s' , compare to g = -9.8 ...
max_latt_acc = 5
max_z_acc = 30
if abs(self.xacc_comm[-1]) > max_latt_acc: self.xacc_comm[-1] = max_latt_acc * sign(self.xacc_comm[-1])
if abs(self.yacc_comm[-1]) > max_latt_acc: self.yacc_comm[-1] = max_latt_acc * sign(self.yacc_comm[-1])
if abs(self.zacc_comm[-1]) > max_z_acc: self.zacc_comm[-1] = max_z_acc * sign(self.zacc_comm[-1])
min_z_acc = 12
if self.zacc_comm[-1] < min_z_acc: self.zacc_comm[-1] = min_z_acc
# using the comm linear accellerations, calc theta_c, phi_c and T_c
theta_numerator = (self.xacc_comm[-1] * c(self.psi[-1]) + self.yacc_comm[-1] * s(self.psi[-1]) )
theta_denominator = float( self.zacc_comm[-1] + self.g )
if theta_denominator <= 0:
theta_denominator = 0.1 # don't divide by zero !!!
self.theta_comm.append(arctan2( theta_numerator , theta_denominator ))
self.phi_comm.append(arcsin( (self.xacc_comm[-1] * s(self.psi[-1]) - self.yacc_comm[-1] * c(self.psi[-1]) ) / float(sqrt( self.xacc_comm[-1]**2 +
self.yacc_comm[-1]**2 +
(self.zacc_comm[-1] + self.g)**2 )) ))
self.T_comm.append(self.m * ( self.xacc_comm[-1] * ( s(self.theta[-1])*c(self.psi[-1])*c(self.phi[-1]) + s(self.psi[-1])*s(self.phi[-1]) ) +
self.yacc_comm[-1] * ( s(self.theta[-1])*s(self.psi[-1])*c(self.phi[-1]) - c(self.psi[-1])*s(self.phi[-1]) ) +
(self.zacc_comm[-1] + self.g) * ( c(self.theta[-1])*c(self.phi[-1]) )
))
if self.T_comm[-1] < 1.0:
self.T_comm = self.T_comm[:-1]
self.T_comm.append(1.0)
# we will need the derivatives of the comanded angles for the torque control laws.
self.phidot_comm = (self.phi_comm[-1] - self.phi_comm[-2])/self.h
self.thetadot_comm = (self.theta_comm[-1] - self.theta_comm[-2])/self.h
# solve for torques based on theta_c, phi_c and T_c , also psi_des , and previous values of theta, phi, and psi
tao_phi_comm_temp = ( self.kpphi*(self.phi_comm[-1] - self.phi[-1]) + self.kdphi*(self.phidot_comm - self.phidot[-1]) )*self.Ixx
tao_theta_comm_temp = ( self.kptheta*(self.theta_comm[-1] - self.theta[-1]) + self.kdtheta*(self.thetadot_comm - self.thetadot[-1]) )*self.Iyy
tao_psi_comm_temp = ( self.kppsi*(self.psi_des - self.psi[-1]) + self.kdpsi*( self.psidot_des - self.psidot[-1] ) )*self.Izz
self.tao_phi_comm.append(tao_phi_comm_temp )
self.tao_theta_comm.append(tao_theta_comm_temp )
self.tao_psi_comm.append(tao_psi_comm_temp )
#--------------------------------solve for motor speeds, eq 24
self.w1_arg.append( (self.T_comm[-1] / (4.0*self.k)) - ( self.tao_theta_comm[-1] / (2.0*self.k*self.L) ) - ( self.tao_psi_comm[-1] / (4.0*self.b) ) )
self.w2_arg.append( (self.T_comm[-1] / (4.0*self.k)) - ( self.tao_phi_comm[-1] / (2.0*self.k*self.L) ) + ( self.tao_psi_comm[-1] / (4.0*self.b) ) )
self.w3_arg.append( (self.T_comm[-1] / (4.0*self.k)) + ( self.tao_theta_comm[-1] / (2.0*self.k*self.L) ) - ( self.tao_psi_comm[-1] / (4.0*self.b) ) )
self.w4_arg.append( (self.T_comm[-1] / (4.0*self.k)) + ( self.tao_phi_comm[-1] / (2.0*self.k*self.L) ) + ( self.tao_psi_comm[-1] / (4.0*self.b) ) )
self.w1.append( sqrt( self.w1_arg[-1] ) )
self.w2.append( sqrt( self.w2_arg[-1] ) )
#.........这里部分代码省略.........
示例12: controller
def controller(states,states_d,parameters):
# mass of vehicles (kg)
m = parameters.m
# acceleration due to gravity (m/s^2)
g = parameters.g
# Angular velocities multiplication factor
# Dw = parameters.Dw
# third canonical basis vector
e3 = numpy.array([0.0,0.0,1.0])
#--------------------------------------#
# transported mass: position and velocity
x = states[0:3];
v = states[3:6];
# thrust unit vector and its angular velocity
R = states[6:15];
R = numpy.reshape(R,(3,3))
n = R.dot(e3)
# print(GetEulerAngles(R)*180/3.14)
#--------------------------------------#
# desired quad trajectory
xd = states_d[0:3];
vd = states_d[3:6];
ad = states_d[6:9];
jd = states_d[9:12];
sd = states_d[12:15];
#--------------------------------------#
# position error and velocity error
ep = xd - x
ev = vd - v
#--------------------------------------#
G = g*e3 + ad
Gdot = jd
G2dot = sd
G_all = numpy.concatenate([G,Gdot,G2dot])
#--------------------------------------#
TT,wd,nTd = UniThurstControlComplete(ep,ev,n,G_all,parameters)
U = numpy.array([0.0,0.0,0.0,0.0])
U[0] = TT*m
RT = numpy.transpose(R)
U[1:4] = RT.dot(wd)
#--------------------------------------#
# yaw control: gain
k_yaw = parameters.k_yaw;
# desired yaw: psi_star
psi_star = parameters.psi_star;
# current euler angles
euler = euler_rad_from_rot(R);
phi = euler[0];
theta = euler[1];
psi = euler[2];
psi_star_dot = 0;
psi_dot = psi_star_dot - k_yaw*s(psi - psi_star);
U[3] = 1/c(phi)*(c(theta)*psi_dot - s(phi)*U[2]);
U = Cmd_Converter(U,parameters)
return U
示例13: rot_x
def rot_x(tt):
"""This function returns the rotation matrix corresponding to a rotation
of tt radians about the x-axis.
"""
return numpy.array(
[[1.0, 0.0, 0.0], [0.0, c(tt), -s(tt)], [0.0, s(tt), c(tt)]])
示例14: rot_z
def rot_z(tt):
"""This function returns the rotation matrix corresponding to a rotation
of tt radians about the z-axis.
"""
return np.array(
[[c(tt), -s(tt), 0.0], [s(tt), c(tt), 0.0], [0.0, 0.0, 1]])
示例15: coriolis_matrix
def coriolis_matrix(ph,th,phd,thd,psd ,ixx,iyy,izz):
c11 = 0
c12 = (iyy-izz) * ( thd*c(ph)*s(ph) + psd*c(th)*s(ph)**2 ) + (izz-iyy)*psd*(c(ph)**2)*c(th) - ixx*psd*c(th)
c13 = (izz-iyy) * psd * c(ph) * s(ph) * c(th)**2
c21 = (izz-iyy) * ( thd*c(ph)*s(ph) + psd*s(ph)*c(th) ) + (iyy-izz) * psd * (c(ph)**2) * c(th) + ixx * psd * c(th)
c22 = (izz-iyy)*phd*c(ph)*s(ph)
c23 = -ixx*psd*s(th)*c(th) + iyy*psd*(s(ph)**2)*s(th)*c(th)
c31 = (iyy-izz)*phd*(c(th)**2)*s(ph)*c(ph) - ixx*thd*c(th)
c32 = (izz-iyy)*( thd*c(ph)*s(ph)*s(th) + phd*(s(ph)**2)*c(th) ) + (iyy-izz)*phd*(c(ph)**2)*c(th) + ixx*psd*s(th)*c(th) - iyy*psd*(s(ph)**2)*s(th)*c(th) - izz*psd*(c(ph)**2)*s(th)*c(th)
c33 = (iyy-izz) * phd *c(ph)*s(ph)*(c(th)**2) - iyy * thd*(s(ph)**2) * c(th)*s(th) - izz*thd*(c(ph)**2)*c(th)*s(th) + ixx*thd*c(th)*s(th)
return n.array([
[c11,c12,c13],
[c21,c22,c23],
[c31,c32,c33]
])