当前位置: 首页>>代码示例>>Python>>正文


Python numpy.real函数代码示例

本文整理汇总了Python中numpy.real函数的典型用法代码示例。如果您正苦于以下问题:Python real函数的具体用法?Python real怎么用?Python real使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了real函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: invert

 def invert(self, estimate):
     """Invert the estimate to produce slopes.
     
     Parameters
     ----------
     estimate : array_like
         Phase estimate to invert.
     
     Returns
     -------
     xs : array_like
         Estimate of the x slopes.
     ys : array_like
         Estimate of the y slopes.
     
     
     """
     if self.manage_tt:
         estimate, ttx, tty = remove_tiptilt(self.ap, estimate)
     
     est_ft = fftpack.fftn(estimate) / 2.0
     
     xs_ft = self.gx * est_ft
     ys_ft = self.gy * est_ft
     
     xs = np.real(fftpack.ifftn(xs_ft))
     ys = np.real(fftpack.ifftn(ys_ft))
     
     if self.manage_tt and not self.suppress_tt:
         xs += ttx
         ys += tty
     
     return (xs, ys)
开发者ID:alexrudy,项目名称:FTR,代码行数:33,代码来源:ftr.py

示例2: SaveData

	def SaveData (self, fname, verbose = True):

		if (verbose):
			print ("  Saving measurement to %s ... " % fname)

		start = time.clock()

		f = h5py.File(fname, 'w')

		f['data_r'] = np.squeeze(np.real(self.data).transpose())
		f['data_i'] = np.squeeze(np.imag(self.data).transpose())

		if (self.noise != 0):
			f['noise_r'] = np.squeeze(np.real(self.noise).transpose())
			f['noise_i'] = np.squeeze(np.imag(self.noise).transpose())
		
		if (self.acs != 0):
			f['acs_r'] = np.squeeze(np.real(self.acs).transpose())
			f['acs_i'] = np.squeeze(np.imag(self.acs).transpose())
		
		if (self.sync.any() != 0):
                        f['sync']  = self.sync.transpose()

		f.close()

		if (verbose):
			print '    ... saved in %(time).1f s.\n' % {"time": time.clock()-start}

		return
开发者ID:kvahed,项目名称:PyRawReader,代码行数:29,代码来源:rawparser.py

示例3: FFT_Correlation

def FFT_Correlation(x,y):
    """
    FFT-based correlation, much faster than numpy autocorr.
    x and y are row-based vectors of arbitrary lengths.
    This is a vectorized implementation of O(N*log(N)) flops.
    """

    lengthx = x.shape[0]
    lengthy = y.shape[0]

    x = np.reshape(x,(1,lengthx))
    y = np.reshape(y,(1,lengthy))

    length = np.array([lengthx, lengthy]).min()
    
    x = x[:length]
    y = y[:length]
    
    fftx = fft(x, 2 * length - 1, axis=1) #pad with zeros
    ffty = fft(y, 2 * length - 1, axis=1)

    corr_xy = fft.ifft(fftx * np.conjugate(ffty), axis=1)
    corr_xy = np.real(fft.fftshift(corr_xy, axes=1)) #should be no imaginary part

    corr_yx = fft.ifft(ffty * np.conjugate(fftx), axis=1)
    corr_yx = np.real(fft.fftshift(corr_yx, axes=1))

    corr = 0.5 * (corr_xy[:,length:] + corr_yx[:,length:]) / range(1,length)[::-1]
    return np.reshape(corr,corr.shape[1])
开发者ID:AndySomogyi,项目名称:dms,代码行数:29,代码来源:correlation.py

示例4: update_all_baseline_plots

def update_all_baseline_plots(i, fig, crawler, lines, norm_cross=False, forward=True):

    if forward:
        try:
            crawler.forward()
        except EOFError as err:
            print err
            raw_input("End of File. Press enter to quit.")
            sys.exit()

    burst = crawler

    for k in range(len(BASELINES)):
        if k < 4:
            #autos
            lines[k].set_data(FREQS, 10*np.log10(burst.autos[BASELINES[k]]))
            #overlays
            lines[-(k+1)].set_data(FREQS,10*np.log10(burst.autos[BASELINES[k]]))

        elif norm_cross:

			norm_val = np.array(burst.cross[BASELINES[k]])/np.sqrt(np.array(burst.autos[BASELINES[k][0]*2])*np.array(burst.autos[BASELINES[k][1]*2]))
			lines[k]['real'].set_data(FREQS, np.real(norm_val))
			lines[k]['imag'].set_data(FREQS, np.imag(norm_val))
        else:
			lines[k].set_data(FREQS, 10*np.log10(np.abs(np.real(burst.cross[BASELINES[k]]))))



    return lines
开发者ID:aldof19,项目名称:lofasm,代码行数:30,代码来源:animate_lofasm.py

示例5: _exportDataToText

    def _exportDataToText(self, file):
        """Saves textual data to a file

        """
        Nt = self.data.shape[0]
        N = self.data.shape[1]
        # all elements [real] + (all elements - diagonal) [imaginary] + time
        Na = N + 1 + N*(N-1) 

        out = numpy.zeros((Nt, Na), dtype=numpy.float64)   
        
        for i in range(Nt):
            #print("%%%%")
            # time
            out[i,0] = self.TimeAxis.data[i]
            #print(0)
            # populations
            for j in range(N):
               out[i,j+1] = numpy.real(self.data[i,j,j])
               #print(j+1)
            # coherences
            l = 0
            for j in range(N):
                for k in range(j+1,N):
                    out[i,N+1+l] = numpy.real(self.data[i,j,k])
                    #print(N+1+l)
                    l += 1
                    out[i,N+1+l] = numpy.imag(self.data[i,j,k])
                    #print(N+1+l)
                    l += 1
                    
        numpy.savetxt(file, out)
开发者ID:tmancal74,项目名称:quantarhei,代码行数:32,代码来源:dmevolution.py

示例6: eta_fil

    def eta_fil(self, x, V_app, apprx=(0, 0, 0, 0)):
        m_eff = self.m_r * const.electron_mass

        mpmath.mp.dps = 20
        x0 = Symbol('x0')  # eta_fil
        x1 = Symbol('x1')  # eta_ac
        x2 = Symbol('x2')  # eta_hop
        x3 = Symbol('x3')  # V_tunnel

        f0 = const.Boltzmann * self.T / (1 - self.alpha) / const.elementary_charge / self.z * \
             ln(self.A_fil/self.A_ac*(exp(- self.alpha * const.elementary_charge * self.z / const.Boltzmann / self.T * x0) - 1) + 1) - x1# eta_ac = f(eta_fil) x1 = f(x0)
        f1 = x*2*const.Boltzmann*self.T/self.a/self.z/const.elementary_charge*\
             asinh(self.j_0et/self.j_0hop*(exp(- self.alpha * const.elementary_charge * self.z / const.Boltzmann / self.T * x0) - 1)) - x2# eta_hop = f(eta_fil)
        f2 = x1 - x0 + x2 - x3

        f3 = -V_app + ((self.C * 3 * sqrt(2 * m_eff * ((4+x3/2)*const.elementary_charge)) / 2 / x * (const.elementary_charge / const.Planck)**2 * \
             exp(- 4 * const.pi * x / const.Planck * sqrt(2 * m_eff * ((4+x3/2)*const.elementary_charge))) * self.A_fil*x3)
                       + (self.j_0et*self.A_fil*(exp(-self.alpha*const.elementary_charge*self.z*x0/const.Boltzmann/self.T) - 1))) * (self.R_el + self.R_S + self.rho_fil*(self.L - x) / self.A_fil) \
             + x3

        eta_fil, eta_ac, eta_hop, V_tunnel = nsolve((f0, f1, f2, f3), [x0, x1, x2, x3], apprx)
        eta_fil = np.real(np.complex128(eta_fil))
        eta_ac = np.real(np.complex128(eta_ac))
        eta_hop = np.real(np.complex128(eta_hop))
        V_tunnel = np.real(np.complex128(V_tunnel))
        current = ((self.C * 3 * sqrt(2 * m_eff * ((4+V_tunnel)*const.elementary_charge)) / 2 / x * (const.elementary_charge / const.Planck)**2 * \
            exp(- 4 * const.pi * x / const.Planck * sqrt(2 * m_eff * ((4+V_tunnel)*const.elementary_charge))) * self.A_fil*V_tunnel)
                       + (self.j_0et*self.A_fil*(exp(-self.alpha*const.elementary_charge*self.z*eta_fil/const.Boltzmann/self.T) - 1)))
        print(eta_fil, eta_ac, eta_hop, V_tunnel)
        # print(eta_ac - eta_fil + eta_hop - V_tunnel)
        return eta_fil, eta_ac, eta_hop, V_tunnel, current
开发者ID:KrepakVitaly,项目名称:nanotech,代码行数:31,代码来源:main.py

示例7: window_fn_matrix

def window_fn_matrix(Q,N,num_remov=None,save_tag=None,lms=None):
    Q = n.matrix(Q); N = n.matrix(N)
    Ninv = uf.pseudo_inverse(N,num_remov=None) # XXX want to remove dynamically
    #print Ninv 
    info = n.dot(Q.H,n.dot(Ninv,Q))
    M = uf.pseudo_inverse(info,num_remov=num_remov)
    W = n.dot(M,info)

    if save_tag!=None:
        foo = W[0,:]
        foo = n.real(n.array(foo))
        foo.shape = (foo.shape[1]),
        print foo.shape
        p.scatter(lms[:,0],foo,c=lms[:,1],cmap=mpl.cm.PiYG,s=50)
        p.xlabel('l (color is m)')
        p.ylabel('W_0,lm')
        p.title('First Row of Window Function Matrix')
        p.colorbar()
        p.savefig('{0}/{1}_W.pdf'.format(fig_loc,save_tag))
        p.clf()

        print 'W ',W.shape
        p.imshow(n.real(W))
        p.title('Window Function Matrix')
        p.colorbar()
        p.savefig('{0}/{1}_W_im.pdf'.format(fig_loc,save_tag))
        p.clf()


    return W
开发者ID:SaulAryehKohn,项目名称:capo,代码行数:30,代码来源:Q_gsm_error_analysis.py

示例8: _test_random

def _test_random(test_case,inarr,outarr,tol):
    tc = test_case
    # Test that applying a transform and its inverse to reasonably long, random
    # input gives back the (appropriately scaled) input. We must allow for numerical
    # error, and it seems more reliable to check using normwise error (than elementwise).
    #
    # First test IFFT(FFT(random))
    # The numpy randn(n) provides an array of n numbers drawn from standard normal
    if dtype(inarr).kind == 'c':
        inarr._data[:] = randn(len(inarr)) +1j*randn(len(inarr))
        # If we're going to do a HC2R transform we must worry about DC/Nyquist imaginary
        if dtype(outarr).kind == 'f':
            inarr._data[0] = real(inarr[0])
            if (len(outarr)%2)==0:
                inarr._data[len(inarr)-1] = real(inarr[len(inarr)-1])
    else:
        inarr._data[:] = randn(len(inarr))
    incopy = type(inarr)(inarr)
    outarr.clear()
    # An FFT followed by IFFT gives Array scaled by len(Array), but for
    # Time/FrequencySeries there should be no scaling.
    if type(inarr) == pycbc.types.Array:
        incopy *= len(inarr)
    with tc.context:
        pycbc.fft.fft(inarr, outarr)
        pycbc.fft.ifft(outarr, inarr)
        emsg="IFFT(FFT(random)) did not reproduce original array to within tolerance {0}".format(tol)
        if isinstance(incopy,ts) or isinstance(incopy,fs):
            tc.assertTrue(incopy.almost_equal_norm(inarr,tol=tol,dtol=tol),
                          msg=emsg)
        else:
            tc.assertTrue(incopy.almost_equal_norm(inarr,tol=tol),
                          msg=emsg)
    # Perform arithmetic on outarr and inarr to pull them off of the GPU:
    outarr *= 1.0
    inarr *= 1.0
    # Now the same for FFT(IFFT(random))
    if dtype(outarr).kind == 'c':
        outarr._data[:] = randn(len(outarr))+1j*randn(len(outarr))
        # If we're going to do a HC2R transform we must worry about DC/Nyquist imaginary
        if dtype(inarr).kind == 'f':
            outarr._data[0] = real(outarr[0])
            if (len(inarr)%2)==0:
                outarr._data[len(outarr)-1] = real(outarr[len(outarr)-1])
    else:
        outarr._data[:] = randn(len(outarr))
    inarr.clear()
    outcopy = type(outarr)(outarr)
    if type(outarr) == pycbc.types.Array:
        outcopy *= len(inarr)
    with tc.context:
        pycbc.fft.ifft(outarr, inarr)
        pycbc.fft.fft(inarr, outarr)
        emsg="FFT(IFFT(random)) did not reproduce original array to within tolerance {0}".format(tol)
        if isinstance(outcopy,ts) or isinstance(outcopy,fs):
            tc.assertTrue(outcopy.almost_equal_norm(outarr,tol=tol,dtol=tol),
                          msg=emsg)
        else:
            tc.assertTrue(outcopy.almost_equal_norm(outarr,tol=tol),
                          msg=emsg)
开发者ID:bema-ligo,项目名称:pycbc,代码行数:60,代码来源:fft_base.py

示例9: icd

    def icd(self, G1, G2):
        """Incomplete Cholesky decomposition
        """
        
        # remove mean. avoid standard calculation N0 = eye(N)-1/N*ones(N);
        G1 = G1 - numpy.array(numpy.mean(G1, 0), ndmin=2, copy=False)
        G2 = G2 - numpy.array(numpy.mean(G2, 0), ndmin=2, copy=False)

        R, D = self.method(G1, G2, self.reg)
        
        #solve generalized eigenvalues problem
        betas, alphas = scipy.linalg.eig(R,D)
        ind = numpy.argsort(numpy.real(betas))
        max_ind = ind[-1]
        alpha = alphas[:, max_ind]
        alpha = alpha/numpy.linalg.norm(alpha)
        beta = numpy.real(betas[max_ind])
        
        N1 = G1.shape[1]
        alpha1 = alpha[:N1]
        alpha2 = alpha[N1:]
        
        y1 = dot(G1, alpha1)
        y2 = dot(G2, alpha2)

        self.alpha1 = alpha1
        self.alpha2 = alpha2
        
        return (y1, y2, beta)                
开发者ID:gsudre,项目名称:research_code,代码行数:29,代码来源:kcca.py

示例10: closest_point_on_the_parabola

def closest_point_on_the_parabola(a, px, py):
    thingy1 = 2. * a * py
    thingy2 = np.sqrt(-3 + 0j)
    thingy3 = 2 ** (1 / 3.)
    thingy4 = 2 ** (2 / 3.)
    thingy = (-108. * a ** 4 * px + np.sqrt(11664. * a ** 8 * px ** 2 - 864. * a ** 6 * (-1 + thingy1) ** 3 + 0j)) ** (
    1 / 3.)
    Aone = (thingy3 * (-1. + thingy1))
    Atwo = thingy
    Athree = thingy
    Afour = (6. * thingy3 * a ** 2)
    Bone = ((1. + thingy2) * (-1. + thingy1))
    Btwo = (thingy4 * thingy)
    Bthree = ((1. - thingy2) * thingy)
    Bfour = (12. * thingy3 * a ** 2)
    Cone = (1. - thingy2) * (-1 + thingy1)
    Ctwo = thingy4 * thingy
    Cthree = (1. + thingy2) * thingy
    Cfour = 12. * thingy3 * a ** 2

    A = -np.real(Aone / Atwo + Athree / Afour)
    B = np.real(Bone / Btwo + Bthree / Bfour)
    C = np.real(Cone / Ctwo + Cthree / Cfour)

    solns = [A, B, C]
    solns_temp = []
    for soln in solns:
        solns_temp.append(np.abs(soln - px))

    val, idx = min((val, idx) for (idx, val) in enumerate(solns_temp))
    return solns[idx]
开发者ID:haukejung,项目名称:pulsarpkg,代码行数:31,代码来源:multiprocessing_helper_functions.py

示例11: simulate

    def simulate(self, steps, time, collect_dynamic = False):
        """!
        @brief Performs static simulation of oscillatory network.
        
        @param[in] steps (uint): Number simulation steps.
        @param[in] time (double): Time of simulation.
        @param[in] collect_dynamic (bool): If True - returns whole dynamic of oscillatory network, otherwise returns only last values of dynamics.
        
        @return (list) Dynamic of oscillatory network. If argument 'collect_dynamic' is True, than return dynamic for the whole simulation time,
                 otherwise returns only last values (last step of simulation) of output dynamic.
        
        @see simulate()
        @see simulate_dynamic()
        
        """
        
        dynamic_amplitude, dynamic_time = ([], []) if collect_dynamic is False else ([self.__amplitude], [0]);
        
        step = time / steps;
        int_step = step / 10.0;
        
        for t in numpy.arange(step, time + step, step):
            self.__amplitude = self.__calculate(t, step, int_step);
            
            if collect_dynamic is True:
                dynamic_amplitude.append([ numpy.real(amplitude)[0] for amplitude in self.__amplitude ]);
                dynamic_time.append(t);
        
        if collect_dynamic is False:
            dynamic_amplitude.append([ numpy.real(amplitude)[0] for amplitude in self.__amplitude ]);
            dynamic_time.append(time);

        output_sync_dynamic = fsync_dynamic(dynamic_amplitude, dynamic_time);
        return output_sync_dynamic;
开发者ID:annoviko,项目名称:pyclustering,代码行数:34,代码来源:fsync.py

示例12: instantaneous_frequency

def instantaneous_frequency(data, fs, fk):
    """
    Instantaneous frequency of a signal.

    Computes the instantaneous frequency of the given data which can be
    windowed or not. The instantaneous frequency is determined by the time
    derivative of the analytic signal of the input data.

    :type data: :class:`~numpy.ndarray`
    :param data: Data to determine instantaneous frequency of.
    :param fs: Sampling frequency.
    :param fk: Coefficients for calculating time derivatives
        (calculated via central difference).
    :return: **omega[, domega]** - Instantaneous frequency of input data, Time
        derivative of instantaneous frequency (windowed only).
    """
    x = envelope(data)
    if len(x[0].shape) > 1:
        omega = np.zeros(x[0].shape[0], dtype=np.float64)
        i = 0
        for row in x[0]:
            f = np.real(row)
            h = np.imag(row)
            # faster alternative to calculate f_add
            f_add = np.hstack(([f[0]] * (np.size(fk) // 2), f, [f[np.size(f) - 1]] * (np.size(fk) // 2)))
            fd = signal.lfilter(fk, 1, f_add)
            # correct start and end values of time derivative
            fd = fd[np.size(fk) - 1 : np.size(fd)]
            # faster alternative to calculate h_add
            h_add = np.hstack(([h[0]] * (np.size(fk) // 2), h, [h[np.size(h) - 1]] * (np.size(fk) // 2)))
            hd = signal.lfilter(fk, 1, h_add)
            # correct start and end values of time derivative
            hd = hd[np.size(fk) - 1 : np.size(hd)]
            omega_win = abs(((f * hd - fd * h) / (f * f + h * h)) * fs / 2 / np.pi)
            omega[i] = np.median(omega_win)
            i = i + 1
        # faster alternative to calculate omega_add
        omega_add = np.hstack(
            ([omega[0]] * (np.size(fk) // 2), omega, [omega[np.size(omega) - 1]] * (np.size(fk) // 2))
        )
        domega = signal.lfilter(fk, 1, omega_add)
        # correct start and end values of time derivative
        domega = domega[np.size(fk) - 1 : np.size(domega)]
        return omega, domega
    else:
        omega = np.zeros(np.size(x[0]), dtype=np.float64)
        f = np.real(x[0])
        h = np.imag(x[0])
        # faster alternative to calculate f_add
        f_add = np.hstack(([f[0]] * (np.size(fk) // 2), f, [f[np.size(f) - 1]] * (np.size(fk) // 2)))
        fd = signal.lfilter(fk, 1, f_add)
        # correct start and end values of time derivative
        fd = fd[np.size(fk) - 1 : np.size(fd)]
        # faster alternative to calculate h_add
        h_add = np.hstack(([h[0]] * (np.size(fk) // 2), h, [h[np.size(h) - 1]] * (np.size(fk) // 2)))
        hd = signal.lfilter(fk, 1, h_add)
        # correct start and end values of time derivative
        hd = hd[np.size(fk) - 1 : np.size(hd)]
        omega = abs(((f * hd - fd * h) / (f * f + h * h)) * fs / 2 / np.pi)
        return omega
开发者ID:jmfee-usgs,项目名称:obspy,代码行数:60,代码来源:cpxtrace.py

示例13: getArgumentVariable

def getArgumentVariable(_ComplexVariable):

	#Debug
	'''
	print('l 31 Numscipier')
	print('_ComplexVariable is ')
	print(_ComplexVariable)
	print('')
	'''

	#import
	import numpy as np

	#return
	return 2.*np.arctan(
	np.imag(_ComplexVariable)/(
	        np.sqrt(
	            np.imag(
	                _ComplexVariable
	            )**2+np.real(
	                _ComplexVariable
	            )**2)+np.real(
	                _ComplexVariable
	            )
	    )
	);
开发者ID:BinWang20140601,项目名称:ShareYourSystem,代码行数:26,代码来源:__init__.py

示例14: test_morlet

def test_morlet():
    """Test morlet with and without zero mean"""
    Wz = morlet(1000, [10], 2., zero_mean=True)
    W = morlet(1000, [10], 2., zero_mean=False)

    assert_true(np.abs(np.mean(np.real(Wz[0]))) < 1e-5)
    assert_true(np.abs(np.mean(np.real(W[0]))) > 1e-3)
开发者ID:starzynski,项目名称:mne-python,代码行数:7,代码来源:test_tfr.py

示例15: _select_function

def _select_function(sort, typ):
    if typ in ['F','D']:
        if callable(sort):
            # assume the user knows what they're doing
            sfunction = sort
        elif sort == 'lhp':
            sfunction = lambda x,y: (np.real(x/y) < 0.0)
        elif sort == 'rhp':
            sfunction = lambda x,y: (np.real(x/y) >= 0.0)
        elif sort == 'iuc':
            sfunction = lambda x,y: (abs(x/y) <= 1.0)
        elif sort == 'ouc':
            sfunction = lambda x,y: (abs(x/y) > 1.0)
        else:
            raise ValueError("sort parameter must be None, a callable, or "
                "one of ('lhp','rhp','iuc','ouc')")
    elif typ in ['f','d']:
        if callable(sort):
            # assume the user knows what they're doing
            sfunction = sort
        elif sort == 'lhp':
            sfunction = lambda x,y,z: (np.real((x+y*1j)/z) < 0.0)
        elif sort == 'rhp':
            sfunction = lambda x,y,z: (np.real((x+y*1j)/z) >= 0.0)
        elif sort == 'iuc':
            sfunction = lambda x,y,z: (abs((x+y*1j)/z) <= 1.0)
        elif sort == 'ouc':
            sfunction = lambda x,y,z: (abs((x+y*1j)/z) > 1.0)
        else:
            raise ValueError("sort parameter must be None, a callable, or "
                "one of ('lhp','rhp','iuc','ouc')")
    else:  # to avoid an error later
        raise ValueError("dtype %s not understood" % typ)
    return sfunction
开发者ID:AI-Org,项目名称:scipy,代码行数:34,代码来源:_decomp_qz.py


注:本文中的numpy.real函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。