当前位置: 首页>>代码示例>>Python>>正文


Python numpy.put函数代码示例

本文整理汇总了Python中numpy.put函数的典型用法代码示例。如果您正苦于以下问题:Python put函数的具体用法?Python put怎么用?Python put使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了put函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _select_mono

    def _select_mono(self, chunk):
        keep_monomorphic = self.keep_monomorphic

        gts = chunk[GT_FIELD]
        if is_dataset(gts):
            gts = gts[:]

        shape = gts.shape

        # we count how many different alleles are per row
        # we do it adding a complex part to each number. The complex part is
        # related with the row. Then we use unique
        weight = 1j * numpy.arange(0, shape[0])
        weight = numpy.repeat(weight, shape[1] * shape[2]).reshape(shape)
        b = gts + weight
        _, ind = numpy.unique(b, return_index=True)
        b = numpy.zeros_like(gts)
        c = numpy.ones_like(gts)
        numpy.put(b, ind, c.flat[ind])
        c = numpy.sum(b, axis=(2, 1))

        # we remove the missing values from the count
        rows_with_missing = numpy.any(gts == -1, axis=(1, 2))
        c -= rows_with_missing

        if keep_monomorphic:
            selected_rows = (c <= 2)
        else:
            selected_rows = (c == 2)
        return selected_rows
开发者ID:JoseBlanca,项目名称:variation,代码行数:30,代码来源:filters.py

示例2: _inverse_permutation

def _inverse_permutation(p):
    """inverse permutation p"""
    n = p.size
    s = np.zeros(n, dtype=np.int32)
    i = np.arange(n, dtype=np.int32)
    np.put(s, p, i)  # s[p] = i
    return s
开发者ID:0664j35t3r,项目名称:scikit-learn,代码行数:7,代码来源:rcv1.py

示例3: basic_mutation

 def basic_mutation(self_individual, individual):
     """Performs a basic mutation where one value in the chromosome is replaced by another valid value."""
     idx = numpy.random.randint(0, len(individual.genotype))
     value = numpy.random.uniform(low=-100.0, high=100.0)
     numpy.put(individual.genotype, [idx], [value])
     individual.fitness = individual.fitness_evaluator.evaluate(individual)
     return individual
开发者ID:fberanizo,项目名称:sin5006,代码行数:7,代码来源:individual_factory.py

示例4: _process

	def _process(self, X, column, model_class):
		# Remove values that are in mask
		mask = np.array(self._get_mask(X)[:, column].T)[0]
		mask_indices = np.where(mask==True)[0]
		X_data = np.delete(X, mask_indices, 0)

		# Instantiate the model
		model = model_class()

		# Slice out the column to predict and delete the column.
		y_data = X[:, column]
		X_data = np.delete(X_data, column, 1)

		# Split training and test data
		X_train, X_test, y_train, y_test = train_test_split(X_data, y_data, test_size=0.33, random_state=42)

		# Fit the model
		model.fit(X_train, y_train)

		# Score the model
		scores = model.score(X_test, y_test)

		# Predict missing vars
		X_predict = np.delete(X, column, 1)
		y = model.predict(X_predict)

		# Replace values in X with their predictions
		predict_indices = np.where(mask==False)[0]
		np.put(X, predict_indicies, np.take(y, predict_indices))
	
		# Return model and scores
		return (model, scores)
开发者ID:Ouwen,项目名称:scikit-mice,代码行数:32,代码来源:skmice.py

示例5: getPattern

  def getPattern(self, idx, sparseBinaryForm=False, cat=None):
    """Return a training pattern either by index or category number

    Parameters:
    ------------------------------------------------------------------------
    idx:                Index of the training pattern
    sparseBinaryForm:   If true, return only a list of the non-zeros in the
                          training pattern
    cat:                If not None, get the first pattern belonging to category
                          cat. If this is specified, idx must be None

    """

    if cat is not None:
      assert idx is None
      idx = self._categoryList.index(cat)

    if not self.useSparseMemory:
      pattern = self._Memory[idx]
      if sparseBinaryForm:
        pattern = pattern.nonzero()[0]

    else:
      (nz, values) = self._Memory.rowNonZeros(idx)
      if not sparseBinaryForm:
        pattern = numpy.zeros(self._Memory.nCols())
        numpy.put(pattern, nz, 1)
      else:
        pattern = nz

      return pattern
开发者ID:AlexWD,项目名称:nupic,代码行数:31,代码来源:KNNClassifier.py

示例6: fit_final_model

 def fit_final_model(self):
     final_model = RandomForestClassifier(n_estimators = self.ntrees, criterion = self.criterion)
     ws = np.zeros(len(self.y))
     np.put(ws, np.nonzero(self.y == 1)[0], self.params["weight"])
     np.put(ws, np.nonzero(self.y == 0)[0], 1 - self.params["weight"])
     final_model.fit(self.X[:, self.params["var_subset"]], self.y, sample_weight = ws)
     return final_model
开发者ID:btcross26,项目名称:Data-Mining-Capstone-Project,代码行数:7,代码来源:RandomForestAnalysis.py

示例7: sortedlist

def sortedlist(leng):
    counter=0
    aray=np.random.randint(1,1000,leng)
    for i in range(0,leng):
        ini=0
        ini1=1
        for i in aray:
            i2=aray[ini1]
            if i>i2:
                np.put(aray,ini1,i)
                np.put(aray,ini,i2)
                counter=counter+1
                print(aray)
                ini1=ini1+1
                ini=ini+1
                if ini1==len(aray):
                    break
            else:
                ini1=ini1+1
                ini=ini+1
                if ini1==len(aray):
                    break
    
    print"the number of shifts that occured are: ",counter-1
    return(aray)
    
开发者ID:AIBadGuy,项目名称:List-Sort,代码行数:25,代码来源:Sort+Random+List.py

示例8: __init__

    def __init__(self, data) :

        if type(data) == type('') :
            print 'file name:', data            
            data = datafunc.PyVectorDataSet(data, idColumn = 0, headerRow = True, hint = 'csv')

        self.data = data
        self.idDict = misc.list2dict(data.labels.patternID,
                                     range(len(data)))

        print numpy.shape(data.X)
        self.mean = numpy.mean(data.X, 1)
        self.std = std(data.X, 1)
        eps = 1e-5
        I = numpy.nonzero(numpy.less(self.std, eps))[0]
        print 'num zeros:',len(I)
        numpy.put(self.std, I, 1)
        
        self.numCorrelations = 10000
        correlations = numpy.zeros(self.numCorrelations, numpy.float)
        
        for i in range(self.numCorrelations) :
            i1 = random.randrange(0, len(data))
            i2 = random.randrange(0, len(data))
            correlations[i] = self._corrcoef(i1, i2)
        self.meanCorrelation = numpy.mean(correlations)
        self.numCorrelations = 1000        
开发者ID:bpartridge,项目名称:PyML,代码行数:27,代码来源:preproc.py

示例9: expand

    def expand( self, prof, mask, default ):
        """
        Expand profile to have a value also for masked positions.

        :param prof: input profile
        :type  prof: list OR array
        :param mask: atom mask
        :type  mask: [int]
        :param default: default value
        :type  default: any
        
        :return: profile
        :rtype: list OR array
        """
        if mask is not None:

            ## optimized variant for arrays
            if isinstance( prof, N.ndarray ):
                p = N.resize( prof, (len(mask), ) )
                p[:] = default
                N.put( p, N.nonzero( mask )[0], prof )
                return p

            p = [ default ] * len( mask )
            prof.reverse()
            for i in N.nonzero( mask )[0]:
                p[i] = prof.pop()
            return p

        return prof
开发者ID:graik,项目名称:biskit,代码行数:30,代码来源:profileCollection.py

示例10: shift

 def shift(x):
     x_shape = np.shape(x)        
     total_elements = x_shape[0] * x_shape[1]
     elements_to_roll = total_elements - (x_shape[1] * time_step)
     x = np.roll(AA(x, dtype=PRECISION_TO_TYPE[precision]), elements_to_roll)
     np.put(x, range(elements_to_roll, total_elements), default_value)
     return x
开发者ID:1132520084,项目名称:CNTK,代码行数:7,代码来源:recurrent_test.py

示例11: _untransform_params

    def _untransform_params(self, x):
        """
        The transformation required for _set_params_transformed.

        This moves the vector x seen by the optimiser (unconstrained) to the
        valid parameter vector seen by the model

        Note:
          - This function is separate from _set_params_transformed for downstream flexibility
        """
        # work out how many places are fixed, and where they are. tricky logic!
        fix_places = self.fixed_indices + [t[1:] for t in self.tied_indices]
        if len(fix_places):
            fix_places = np.hstack(fix_places)
            Nfix_places = fix_places.size
        else:
            Nfix_places = 0

        free_places = np.setdiff1d(np.arange(Nfix_places + x.size, dtype=np.int), fix_places)

        # put the models values in the vector xx
        xx = np.zeros(Nfix_places + free_places.size, dtype=np.float64)

        xx[free_places] = x
        [np.put(xx, i, v) for i, v in zip(self.fixed_indices, self.fixed_values)]
        [np.put(xx, i, v) for i, v in [(t[1:], xx[t[0]]) for t in self.tied_indices] ]

        [np.put(xx, i, t.f(xx[i])) for i, t in zip(self.constrained_indices, self.constraints)]
        if hasattr(self, 'debug'):
            stop # @UndefinedVariable

        return xx
开发者ID:Dalar,项目名称:GPy,代码行数:32,代码来源:parameterized.py

示例12: _add_ids

    def _add_ids(self, ids):
        n = len(ids)
        if n == 0:
            return

        id_max = max(ids)
        id_max_old = len(self._inds)-1
        n_array_old = len(self)

        ids_existing = np.take(ids, np.flatnonzero(np.less(ids, id_max_old)))
        # print '  ids',ids,'id_max_old',id_max_old,'ids_existing',ids_existing

        # check here if ids are still available
        # if np.sometrue(  np.not_equal( np.take(self._inds, ids_existing), -1)  ):
        #    print 'WARNING in create_ids: some ids already in use',ids_existing
        #    return np.zeros(0,int)

        # extend index map with -1 as necessary
        if id_max > id_max_old:
            # print 'ext',-1*ones(id_max-id_max_old)
            self._inds = np.concatenate((self._inds, -1*np.ones(id_max-id_max_old, int)))

        # assign n new indexes to new ids
        ind_new = np.arange(n_array_old, n_array_old+n, dtype=np.int32)

        # print 'ind_new',ind_new
        np.put(self._inds, ids, ind_new)

        # print '  concat ids..',self._ids,ids
        self._ids = np.concatenate((self._ids, ids))
开发者ID:behrisch,项目名称:sumo,代码行数:30,代码来源:arrayman.py

示例13: testAntisymmetric

def testAntisymmetric(matrix):
    size = matrix.shape 
    if size[0] != size [1]:
        return False
    if size[0] == size[1]:

        inputArray = numpy.array(matrix)
        transposeArray = inputArray.T
        transposeMatrix = numpy.matrix(transposeArray)
        identityArray = numpy.identity(size[0])
        identityMatrix = numpy.matrix(identityArray)
        finalProduct = numpy.arange(size[0] ** 2)
        topVal = size[0] ** 2
        counter = 0
        
        while (counter < topVal):
            replaceVal = finalProduct.item(counter)
            if matrix.item(counter) == 1 and transposeMatrix.item(counter) == 1:
                numpy.put(finalProduct, [replaceVal], [1])
            else:
                numpy.put(finalProduct, [replaceVal], [0])
            counter += 1
            
        finalMatrix = numpy.matrix(finalProduct)
                
        
        if lessThanOrEqual(finalMatrix, identityMatrix, size[0]):
            return True
        return False
开发者ID:piresjo,项目名称:Mathematical-Relations-Library,代码行数:29,代码来源:Relations.py

示例14: python_metropolis

    def python_metropolis(self):
        """Implentation of the Metropolis alogrithm."""
        energy = cy_potts_model.calculate_lattice_energy(self.lattice, self.lattice_size, self.bond_energy)
        magnetization = self.potts_order_parameter()
        for t in range(self.sweeps):
            # Measurement every sweep.
            np.put(self.energy_history, t, energy)
            np.put(self.magnetization_history, t, magnetization)
            for k in range(self.lattice_size**2):
                states = [0, 1, 2]
                # Pick a random location on the lattice.
                rand_y = np.random.randint(0, self.lattice_size)
                rand_x = np.random.randint(0, self.lattice_size)

                spin = self.lattice[rand_y, rand_x]  # Get spin at the random location.
                # Remove the state that the spin at the random location currently occupies.
                states.remove(spin)
                temp_lattice = copy.deepcopy(self.lattice)
                random_new_spin = np.random.choice(states)
                temp_lattice[rand_y, rand_x] = random_new_spin
                assert temp_lattice[rand_y, rand_x] != self.lattice[rand_y, rand_x]
                new_energy = cy_potts_model.calculate_lattice_energy(temp_lattice, self.lattice_size, self.bond_energy)
                energy_delta = new_energy - energy

                # Energy may always be lowered.
                if energy_delta <= 0:
                    acceptance_probability = 1
                # Energy is increased with probability proportional to Boltzmann distribution.
                else:
                    acceptance_probability = np.exp(-self.beta * energy_delta)
                if np.random.random() <= acceptance_probability:
                    # Flip the spin and change the energy.
                    self.lattice[rand_y, rand_x] = random_new_spin
                    energy += energy_delta
                    magnetization = self.potts_order_parameter()
开发者ID:teunzwart,项目名称:bachelor-project,代码行数:35,代码来源:potts_model.py

示例15: tip_distances

def tip_distances(a, bound_indices, tip_indices):
    """Sets each tip to its distance from the root."""
    for i, s in bound_indices:
        i += s
    mask = zeros(len(a))
    put(mask, tip_indices, 1)
    a *= mask[:,newaxis]
开发者ID:GavinHuttley,项目名称:pycogent,代码行数:7,代码来源:fast_tree.py


注:本文中的numpy.put函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。