本文整理汇总了Python中numpy.ones_like函数的典型用法代码示例。如果您正苦于以下问题:Python ones_like函数的具体用法?Python ones_like怎么用?Python ones_like使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了ones_like函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
def __init__(self, capacity=100, cost=100, number=None):
Vehicle = namedtuple("Vehicle", ["index", "capacity", "cost"])
if number is None:
self.number = np.size(capacity)
else:
self.number = number
idxs = np.array(range(0, self.number))
if np.isscalar(capacity):
capacities = capacity * np.ones_like(idxs)
elif np.size(capacity) != np.size(capacity):
print("capacity is neither scalar, nor the same size as num!")
else:
capacities = capacity
if np.isscalar(cost):
costs = cost * np.ones_like(idxs)
elif np.size(cost) != self.number:
print(np.size(cost))
print("cost is neither scalar, nor the same size as num!")
else:
costs = cost
self.vehicles = [Vehicle(idx, capacity, cost) for idx, capacity, cost in zip(idxs, capacities, costs)]
示例2: get_dummy_particles
def get_dummy_particles():
x, y = numpy.mgrid[-5 * dx : box_length + 5 * dx + 1e-10 : dx, -5 * dx : box_height + 5 * dx + 1e-10 : dx]
xd, yd = x.ravel(), y.ravel()
md = numpy.ones_like(xd) * m
hd = numpy.ones_like(xd) * h
rhod = numpy.ones_like(xd) * ro
cd = numpy.ones_like(xd) * co
pd = numpy.zeros_like(xd)
dummy_fluid = base.get_particle_array(name="dummy_fluid", type=Fluid, x=xd, y=yd, h=hd, rho=rhod, c=cd, p=pd)
# remove indices within the square
indices = []
np = dummy_fluid.get_number_of_particles()
x, y = dummy_fluid.get("x", "y")
for i in range(np):
if -dx / 2 <= x[i] <= box_length + dx / 2:
if -dx / 2 <= y[i] <= box_height + dx / 2:
indices.append(i)
to_remove = base.LongArray(len(indices))
to_remove.set_data(numpy.array(indices))
dummy_fluid.remove_particles(to_remove)
return dummy_fluid
示例3: test_arithmetic_overload_ccddata_operand
def test_arithmetic_overload_ccddata_operand(ccd_data):
ccd_data.uncertainty = StdDevUncertainty(np.ones_like(ccd_data))
operand = ccd_data.copy()
result = ccd_data.add(operand)
assert len(result.meta) == 0
np.testing.assert_array_equal(result.data,
2 * ccd_data.data)
np.testing.assert_array_equal(result.uncertainty.array,
np.sqrt(2) * ccd_data.uncertainty.array)
result = ccd_data.subtract(operand)
assert len(result.meta) == 0
np.testing.assert_array_equal(result.data,
0 * ccd_data.data)
np.testing.assert_array_equal(result.uncertainty.array,
np.sqrt(2) * ccd_data.uncertainty.array)
result = ccd_data.multiply(operand)
assert len(result.meta) == 0
np.testing.assert_array_equal(result.data,
ccd_data.data ** 2)
expected_uncertainty = (np.sqrt(2) * np.abs(ccd_data.data) *
ccd_data.uncertainty.array)
np.testing.assert_allclose(result.uncertainty.array,
expected_uncertainty)
result = ccd_data.divide(operand)
assert len(result.meta) == 0
np.testing.assert_array_equal(result.data,
np.ones_like(ccd_data.data))
expected_uncertainty = (np.sqrt(2) / np.abs(ccd_data.data) *
ccd_data.uncertainty.array)
np.testing.assert_allclose(result.uncertainty.array,
expected_uncertainty)
示例4: fix_chip_wavelength
def fix_chip_wavelength(model_orders, data_orders, band_cutoff=1870):
""" Adjust the wavelength in data_orders to be self-consistent
"""
# H band
model_orders_H = [o.copy() for o in model_orders if o.x[-1] < band_cutoff]
data_orders_H = [o.copy() for o in data_orders if o.x[-1] < band_cutoff]
ordernums_H = 121.0 - np.arange(len(model_orders_H))
p_H = fit_wavelength(model_orders_H, ordernums_H, first_order=3, last_order=len(ordernums_H) - 4)
# K band
model_orders_K = [o.copy() for o in model_orders if o.x[-1] > band_cutoff]
data_orders_K = [o.copy() for o in data_orders if o.x[-1] > band_cutoff]
ordernums_K = 92.0 - np.arange(len(model_orders_K))
p_K = fit_wavelength(model_orders_K, ordernums_K, first_order=7, last_order=len(ordernums_K) - 4)
new_orders = []
for i, order in enumerate(data_orders):
pixels = np.arange(order.size(), dtype=np.float)
if order.x[-1] < band_cutoff:
# H band
ordernum = ordernums_H[i] * np.ones_like(pixels)
wave = p_H(pixels, ordernum) / ordernum
else:
# K band
ordernum = ordernums_K[i-len(ordernums_H)] * np.ones_like(pixels)
wave = p_K(pixels, ordernum) / ordernum
new_orders.append(DataStructures.xypoint(x=wave, y=order.y, cont=order.cont, err=order.err))
return new_orders
示例5: get_fluid
def get_fluid():
""" Get the fluid particle array """
x, y = numpy.mgrid[dx : box_length - 1e-10 : dx, dx : box_height - 1e-10 : dx]
xf, yf = x.ravel(), y.ravel()
mf = numpy.ones_like(xf) * m
hf = numpy.ones_like(xf) * h
rhof = numpy.ones_like(xf) * ro
cf = numpy.ones_like(xf) * co
pf = numpy.zeros_like(xf)
fluid = base.get_particle_array(name="fluid", type=Fluid, x=xf, y=yf, h=hf, rho=rhof, c=cf, p=pf)
# remove indices within the square
indices = []
np = fluid.get_number_of_particles()
x, y = fluid.get("x", "y")
for i in range(np):
if 1.0 - dx / 2 <= x[i] <= 2.0 + dx / 2:
if 2.0 - dx / 2 <= y[i] <= 3.0 + dx / 2:
indices.append(i)
to_remove = base.LongArray(len(indices))
to_remove.set_data(numpy.array(indices))
fluid.remove_particles(to_remove)
return fluid
示例6: noise_variance_feedpairs
def noise_variance_feedpairs(self, fi, fj, f_indices, nt_per_day, ndays=None):
ndays = self.ndays if not ndays else ndays # Set to value if not set.
t_int = ndays * units.t_sidereal / nt_per_day
# bw = 1.0e6 * (self.freq_upper - self.freq_lower) / self.num_freq
bw = np.abs(self.frequencies[1] - self.frequencies[0]) * 1e6
return np.ones_like(fi) * np.ones_like(fj) * 2.0*self.tsys(f_indices)**2 / (t_int * bw) # 2.0 for two pol
示例7: prime_to_pixel
def prime_to_pixel(self, xprime, yprime, color=0):
color0 = self._get_ricut()
g0, g1, g2, g3 = self._get_drow()
h0, h1, h2, h3 = self._get_dcol()
px, py, qx, qy = self._get_cscc()
# #$(%*&^(%$%*& bad documentation.
(px,py) = (py,px)
(qx,qy) = (qy,qx)
qx = qx * np.ones_like(xprime)
qy = qy * np.ones_like(yprime)
xprime -= np.where(color < color0, px * color, qx)
yprime -= np.where(color < color0, py * color, qy)
# Now invert:
# yprime = y + g0 + g1 * x + g2 * x**2 + g3 * x**3
# xprime = x + h0 + h1 * x + h2 * x**2 + h3 * x**3
x = xprime - h0
# dumb-ass Newton's method
dx = 1.
# FIXME -- should just update the ones that aren't zero
# FIXME -- should put in some failsafe...
while np.max(np.abs(np.atleast_1d(dx))) > 1e-10:
xp = x + h0 + h1 * x + h2 * x**2 + h3 * x**3
dxpdx = 1 + h1 + h2 * 2*x + h3 * 3*x**2
dx = (xprime - xp) / dxpdx
x += dx
y = yprime - (g0 + g1 * x + g2 * x**2 + g3 * x**3)
return (x, y)
示例8: histgram_3D
def histgram_3D(data):
'''
入力された二次元配列を3Dhistgramとして表示する
'''
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = data[:,0]
y = data[:,1]
hist, xedges, yedges = np.histogram2d(x, y, bins=30)
X, Y = np.meshgrid(xedges[:-1] + 0.25, yedges[:-1] + 0.25)
# bar3dでは行にする
X = X.flatten()
Y = Y.flatten()
Z = np.zeros(len(X))
# 表示するバーの太さ
dx = (xedges[1] - xedges[0]) * np.ones_like(Z)
dy = (yedges[1] - yedges[0]) * np.ones_like(Z)
dz = hist.flatten() # これはそのままでok
# 描画
ax.bar3d(X, Y, Z, dx, dy, dz, color='b', zsort='average')
示例9: isclose
def isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False):
def within_tol(x, y, atol, rtol):
result = np.less_equal(np.abs(x-y), atol + rtol * np.abs(y))
if np.isscalar(a) and np.isscalar(b):
result = np.bool(result)
return result
x = np.array(a, copy=False, subok=True, ndmin=1)
y = np.array(b, copy=False, subok=True, ndmin=1)
xfin = np.isfinite(x)
yfin = np.isfinite(y)
if np.all(xfin) and np.all(yfin):
return within_tol(x, y, atol, rtol)
else:
finite = xfin & yfin
cond = np.zeros_like(finite, subok=True)
# Because we're using boolean indexing, x & y must be the same shape.
# Ideally, we'd just do x, y = broadcast_arrays(x, y). It's in
# lib.stride_tricks, though, so we can't import it here.
x = x * np.ones_like(cond)
y = y * np.ones_like(cond)
# Avoid subtraction with infinite/nan values...
cond[finite] = within_tol(x[finite], y[finite], atol, rtol)
# Check for equality of infinite values...
cond[~finite] = (x[~finite] == y[~finite])
if equal_nan:
# Make NaN == NaN
cond[np.isnan(x) & np.isnan(y)] = True
return cond
示例10: _prepare_sw_arguments
def _prepare_sw_arguments(self, ncol, nlay):
aldif = _climlab_to_rrtm_sfc(self.aldif * np.ones_like(self.Ts))
aldir = _climlab_to_rrtm_sfc(self.aldir * np.ones_like(self.Ts))
asdif = _climlab_to_rrtm_sfc(self.asdif * np.ones_like(self.Ts))
asdir = _climlab_to_rrtm_sfc(self.asdir * np.ones_like(self.Ts))
coszen = _climlab_to_rrtm_sfc(self.coszen * np.ones_like(self.Ts))
# THE REST OF THESE ARGUMENTS ARE STILL BEING HARD CODED.
# NEED TO FIX THIS UP...
# These arrays have an extra dimension for number of bands
dim_sw1 = [nbndsw,ncol,nlay] # [nbndsw,ncol,nlay]
dim_sw2 = [ncol,nlay,nbndsw] # [ncol,nlay,nbndsw]
tauc = np.zeros(dim_sw1) # In-cloud optical depth
ssac = np.zeros(dim_sw1) # In-cloud single scattering albedo
asmc = np.zeros(dim_sw1) # In-cloud asymmetry parameter
fsfc = np.zeros(dim_sw1) # In-cloud forward scattering fraction (delta function pointing forward "forward peaked scattering")
# AEROSOLS
tauaer = np.zeros(dim_sw2) # Aerosol optical depth (iaer=10 only), Dimensions, (ncol,nlay,nbndsw)] # (non-delta scaled)
ssaaer = np.zeros(dim_sw2) # Aerosol single scattering albedo (iaer=10 only), Dimensions, (ncol,nlay,nbndsw)] # (non-delta scaled)
asmaer = np.zeros(dim_sw2) # Aerosol asymmetry parameter (iaer=10 only), Dimensions, (ncol,nlay,nbndsw)] # (non-delta scaled)
ecaer = np.zeros([ncol,nlay,naerec]) # Aerosol optical depth at 0.55 micron (iaer=6 only), Dimensions, (ncol,nlay,naerec)] # (non-delta scaled)
return (aldif,aldir,asdif,asdir,coszen,tauc,ssac,asmc,
fsfc,tauaer,ssaaer,asmaer,ecaer)
示例11: _scalars_changed
def _scalars_changed(self, s):
self.dataset.point_data.scalars = s
self.dataset.point_data.scalars.name = 'scalars'
self.set(vectors=np.c_[np.ones_like(s),
np.ones_like(s),
s])
self.update()
示例12: set_jds
def set_jds(self, val1, val2):
self._check_scale(self._scale) # Validate scale.
sum12, err12 = two_sum(val1, val2)
iy_start = np.trunc(sum12).astype(np.int)
extra, y_frac = two_sum(sum12, -iy_start)
y_frac += extra + err12
val = (val1 + val2).astype(np.double)
iy_start = np.trunc(val).astype(np.int)
imon = np.ones_like(iy_start)
iday = np.ones_like(iy_start)
ihr = np.zeros_like(iy_start)
imin = np.zeros_like(iy_start)
isec = np.zeros_like(y_frac)
# Possible enhancement: use np.unique to only compute start, stop
# for unique values of iy_start.
scale = self.scale.upper().encode('ascii')
jd1_start, jd2_start = erfa.dtf2d(scale, iy_start, imon, iday,
ihr, imin, isec)
jd1_end, jd2_end = erfa.dtf2d(scale, iy_start + 1, imon, iday,
ihr, imin, isec)
t_start = Time(jd1_start, jd2_start, scale=self.scale, format='jd')
t_end = Time(jd1_end, jd2_end, scale=self.scale, format='jd')
t_frac = t_start + (t_end - t_start) * y_frac
self.jd1, self.jd2 = day_frac(t_frac.jd1, t_frac.jd2)
示例13: plot
def plot(y, title, t):
a = y[0]
b = y[1]
print a
if a and b:
bins = numpy.linspace(min(a+b), max(a+b), 20)
pyplot.clf()
if a:
w0 = numpy.ones_like(a)/float(len(a))
pyplot.hist(a, bins, weights=w0,alpha=0.5, color='r', histtype='stepfilled', label='link')
if b:
w1 = numpy.ones_like(b)/float(len(b))
pyplot.hist(b, bins,weights=w1, alpha=0.5, color='b', histtype='stepfilled', label='no link')
pyplot.title(title)
pyplot.ylabel("Fraction over population")
pyplot.xlabel("Similarity")
pyplot.legend();
#plt.savefig("/Users/spoulson/Dropbox/my_papers/figs/"+title.replace(' ','_')+'_'+ str(t) +'.png')
pyplot.show()
示例14: get_circular_patch
def get_circular_patch(name="", type=0, dx=0.05):
x,y = numpy.mgrid[-1.05:1.05+1e-4:dx, -1.05:1.05+1e-4:dx]
x = x.ravel()
y = y.ravel()
m = numpy.ones_like(x)*dx*dx
h = numpy.ones_like(x)*2*dx
rho = numpy.ones_like(x)
p = 0.5*1.0*100*100*(1 - (x**2 + y**2))
cs = numpy.ones_like(x) * 100.0
u = 0*x
v = 0*y
indices = []
for i in range(len(x)):
if numpy.sqrt(x[i]*x[i] + y[i]*y[i]) - 1 > 1e-10:
indices.append(i)
pa = base.get_particle_array(x=x, y=y, m=m, rho=rho, h=h, p=p, u=u, v=v,
cs=cs,name=name, type=type)
la = base.LongArray(len(indices))
la.set_data(numpy.array(indices))
pa.remove_particles(la)
pa.set(idx=numpy.arange(len(pa.x)))
return pa
示例15: siggen_model
def siggen_model(s, rad, phi, z, e, temp, num_1, num_2, num_3, den_1, den_2, den_3):
out = np.zeros_like(data)
detector.SetTemperature(temp)
siggen_wf= detector.GetSiggenWaveform(rad, phi, z, energy=2600)
if siggen_wf is None:
return np.ones_like(data)*-1.
if np.amax(siggen_wf) == 0:
print "wtf is even happening here?"
return np.ones_like(data)*-1.
siggen_wf = np.pad(siggen_wf, (detector.zeroPadding,0), 'constant', constant_values=(0, 0))
num = [num_1, num_2, num_3]
den = [1, den_1, den_2, den_3]
# num = [-1.089e10, 5.863e17, 6.087e15]
# den = [1, 3.009e07, 3.743e14,5.21e18]
system = signal.lti(num, den)
t = np.arange(0, len(siggen_wf)*10E-9, 10E-9)
tout, siggen_wf, x = signal.lsim(system, siggen_wf, t)
siggen_wf /= np.amax(siggen_wf)
siggen_data = siggen_wf[detector.zeroPadding::]
siggen_data = siggen_data*e
out[s:] = siggen_data[0:(len(data) - s)]
return out