本文整理汇总了Python中numpy.ones函数的典型用法代码示例。如果您正苦于以下问题:Python ones函数的具体用法?Python ones怎么用?Python ones使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了ones函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: reset
def reset(self):
if self.Q_init:
self.Q = self.Q_init * np.ones(self.n)
else: # init with small random numbers to avoid ties
self.Q = np.random.uniform(0, 1e-4, self.n)
if self.alpha:
self.update_action_value = self.update_action_value_constant_alpha
else:
self.update_action_value = self.update_action_value_sample_average
if self.epsilon is not None:
self.choose_action = self.choose_action_greedy
elif self.tau:
self.choose_action = self.choose_action_softmax
else:
print('Error: epsilon or tau must be set')
sys.exit(-1)
self.rewards = []
self.rewards_seq = []
self.actions = []
self.k_actions = np.ones(self.n) # number of steps for each action
self.k_reward = 1
self.average_reward = 0
self.optimal_actions = []
示例2: __init__
def __init__(self, n_mixtures, step_sizes=(0.001,), threshold=0.001):
"""
Gaussian proposal function for the weights of a GMM.
Parameters
----------
n_mixtures
step_sizes
Notes
----------
The proposal function works by projecting the weight vector w onto the simplex defined by
w_1 + w_2 + ..... w_n = 1 , 0<=w_i<=1. The change of basis matrix is found by finding n-1 vectors lying on the plane
and using gramm schmidt to get an orthonormal basis. A Gaussian proposal function in (n-1)-d space is
used to find the next point on the simplex.
"""
super(GaussianStepWeightsProposal, self).__init__()
self.step_sizes = step_sizes
self.n_mixtures = n_mixtures
self.count_accepted = np.zeros((len(step_sizes),))
self.count_illegal = np.zeros((len(step_sizes),))
self.count_proposed = np.zeros((len(step_sizes),))
self.threshold = threshold
if n_mixtures > 1:
# get change of basis matrix mapping n dim coodinates to n-1 dim coordinates on simplex
# x1 + x2 + x3 ..... =1
points = np.random.dirichlet([1 for i in xrange(n_mixtures)], size=n_mixtures - 1)
points = points.T
self.plane_origin = np.ones((n_mixtures)) / float(n_mixtures)
# get vectors parallel to plane from its center (1/n,1/n,....)
parallel = points - np.ones(points.shape) / float(n_mixtures)
# do gramm schmidt to get mutually orthonormal vectors (basis)
self.e, _ = np.linalg.qr(parallel)
示例3: test_setitem_all
def test_setitem_all(self):
data = np.zeros((10, 10), dtype=np.uint8)
T = Texture(data=data)
T[...] = np.ones((10, 10, 1))
assert len(T._pending_data) == 1
assert np.allclose(data, np.ones((10, 10, 1)))
示例4: test_multiple_problems
def test_multiple_problems(self):
if MPI:
# split the comm and run an instance of the Problem in each subcomm
subcomm = self.comm.Split(self.comm.rank)
prob = Problem(Group(), impl=impl, comm=subcomm)
size = 5
value = self.comm.rank + 1
values = np.ones(size)*value
A1 = prob.root.add('A1', IndepVarComp('x', values))
C1 = prob.root.add('C1', ABCDArrayComp(size))
prob.root.connect('A1.x', 'C1.a')
prob.root.connect('A1.x', 'C1.b')
prob.setup(check=False)
prob.run()
# check the first output array and store in result
self.assertTrue(all(prob['C1.c'] == np.ones(size)*(value*2)))
result = prob['C1.c']
# gather the results from the separate processes/problems and check
# for expected values
results = self.comm.allgather(result)
self.assertEqual(len(results), self.comm.size)
for n in range(self.comm.size):
expected = np.ones(size)*2*(n+1)
self.assertTrue(all(results[n] == expected))
示例5: test_pes_multidim_error
def test_pes_multidim_error(Simulator, rng):
"""Test that PES works on error connections mapping from N to 1 dims.
Note that the transform is applied before the learning rule, so the error
signal should be 1-dimensional.
"""
with nengo.Network() as net:
err = nengo.Node(output=[0])
ens1 = nengo.Ensemble(20, 3)
ens2 = nengo.Ensemble(10, 1)
# Case 1: ens -> ens, weights=False
conn = nengo.Connection(ens1, ens2,
transform=np.ones((1, 3)),
solver=nengo.solvers.LstsqL2(weights=False),
learning_rule_type={"pes": nengo.PES()})
nengo.Connection(err, conn.learning_rule["pes"])
# Case 2: ens -> ens, weights=True
conn = nengo.Connection(ens1, ens2,
transform=np.ones((1, 3)),
solver=nengo.solvers.LstsqL2(weights=True),
learning_rule_type={"pes": nengo.PES()})
nengo.Connection(err, conn.learning_rule["pes"])
# Case 3: neurons -> ens
conn = nengo.Connection(ens1.neurons, ens2,
transform=np.ones((1, ens1.n_neurons)),
learning_rule_type={"pes": nengo.PES()})
nengo.Connection(err, conn.learning_rule["pes"])
with Simulator(net) as sim:
sim.run(0.01)
示例6: testLoad
def testLoad(self):
with self.cached_session():
var = variables.Variable(np.zeros((5, 5), np.float32))
self.evaluate(variables.global_variables_initializer())
var.load(np.ones((5, 5), np.float32))
self.assertAllClose(np.ones((5, 5), np.float32), self.evaluate(var))
示例7: __init__
def __init__(self,scales = [.3,.01,.01,.01,.01,.01]):
pygame.init()
pygame.joystick.init()
self.controller = pygame.joystick.Joystick(0)
self.controller.init()
self.lStick = LeftStick(self.controller.get_axis(0),
self.controller.get_axis(1))
self.rStick = RightStick(self.controller.get_axis(4),
self.controller.get_axis(3))
# dpad directions ordered as up down left right
dPadDirs = getDirs(self.controller)
self.dPad = DPad(dPadDirs)
#self.dPad = DPad(self.controller.get_hat(0))
self.trigger = Trigger(self.controller.get_axis(2))
self.inUse = [False,False,False,False]
length = 6
self.offsets = np.zeros(length)
self.uScale = np.ones(length)
self.lScale = np.ones(length)
self.driftLimit = .05
self.calibrate()
self.scales = np.array(scales)
time.sleep(1)
self.calibrate()
示例8: test_vec_to_sym_matrix
def test_vec_to_sym_matrix():
# Check error if unsuitable size
vec = np.ones(31)
assert_raises_regex(ValueError, 'Vector of unsuitable shape',
vec_to_sym_matrix, vec)
# Check error if given diagonal shape incompatible with vec
vec = np.ones(3)
diagonal = np.zeros(4)
assert_raises_regex(ValueError, 'incompatible with vector',
vec_to_sym_matrix, vec, diagonal)
# Check output value is correct
vec = np.ones(6, )
sym = np.array([[sqrt(2), 1., 1.], [1., sqrt(2), 1.],
[1., 1., sqrt(2)]])
assert_array_almost_equal(vec_to_sym_matrix(vec), sym)
# Check output value is correct with seperate diagonal
vec = np.ones(3, )
diagonal = np.ones(3)
assert_array_almost_equal(vec_to_sym_matrix(vec, diagonal=diagonal), sym)
# Check vec_to_sym_matrix is the inverse function of sym_matrix_to_vec
# when diagonal is included
assert_array_almost_equal(vec_to_sym_matrix(sym_matrix_to_vec(sym)), sym)
# when diagonal is discarded
vec = sym_matrix_to_vec(sym, discard_diagonal=True)
diagonal = np.diagonal(sym) / sqrt(2)
assert_array_almost_equal(vec_to_sym_matrix(vec, diagonal=diagonal), sym)
示例9: _compute_multipliers
def _compute_multipliers(self, X, y):
n_samples, n_features = X.shape
K = self._gram_matrix(X)
# Solves
# min 1/2 x^T P x + q^T x
# s.t.
# Gx \coneleq h
# Ax = b
P = cvxopt.matrix(np.outer(y, y) * K)
q = cvxopt.matrix(-1 * np.ones(n_samples))
# -a_i \leq 0
# TODO(tulloch) - modify G, h so that we have a soft-margin classifier
G_std = cvxopt.matrix(np.diag(np.ones(n_samples) * -1))
h_std = cvxopt.matrix(np.zeros(n_samples))
# a_i \leq c
G_slack = cvxopt.matrix(np.diag(np.ones(n_samples)))
h_slack = cvxopt.matrix(np.ones(n_samples) * self._c)
G = cvxopt.matrix(np.vstack((G_std, G_slack)))
h = cvxopt.matrix(np.vstack((h_std, h_slack)))
A = cvxopt.matrix(y, (1, n_samples))
b = cvxopt.matrix(0.0)
solution = cvxopt.solvers.qp(P, q, G, h, A, b)
# Lagrange multipliers
return np.ravel(solution['x'])
示例10: poly2pwl
def poly2pwl(polycost, Pmin, Pmax, npts):
"""Converts polynomial cost variable to piecewise linear.
Converts the polynomial cost variable C{polycost} into a piece-wise linear
cost by evaluating at zero and then at C{npts} evenly spaced points between
C{Pmin} and C{Pmax}. If C{Pmin <= 0} (such as for reactive power, where
C{P} really means C{Q}) it just uses C{npts} evenly spaced points between
C{Pmin} and C{Pmax}.
"""
pwlcost = polycost
## size of piece being changed
m, n = polycost.shape
## change cost model
pwlcost[:, MODEL] = PW_LINEAR * ones(m)
## zero out old data
pwlcost[:, COST:COST + n] = zeros(pwlcost[:, COST:COST + n].shape)
## change number of data points
pwlcost[:, NCOST] = npts * ones(m)
for i in range(m):
if Pmin[i] == 0:
step = (Pmax[i] - Pmin[i]) / (npts - 1)
xx = range(Pmin[i], step, Pmax[i])
elif Pmin[i] > 0:
step = (Pmax[i] - Pmin[i]) / (npts - 2)
xx = r_[0, range(Pmin[i], step, Pmax[i])]
elif Pmin[i] < 0 & Pmax[i] > 0: ## for when P really means Q
step = (Pmax[i] - Pmin[i]) / (npts - 1)
xx = range(Pmin[i], step, Pmax[i])
yy = totcost(polycost[i, :], xx)
pwlcost[i, COST:2:(COST + 2*(npts-1) )] = xx
pwlcost[i, (COST+1):2:(COST + 2*(npts-1) + 1)] = yy
return pwlcost
示例11: test_ovr_always_present
def test_ovr_always_present():
"""Test that ovr works with classes that are always present or absent
"""
# Note: tests is the case where _ConstantPredictor is utilised
X = np.ones((10, 2))
X[:5, :] = 0
y = np.zeros((10, 3))
y[5:, 0] = 1
y[:, 1] = 1
y[:, 2] = 1
[[int(i >= 5), 2, 3] for i in range(10)]
ovr = OneVsRestClassifier(LogisticRegression())
assert_warns(UserWarning, ovr.fit, X, y)
y_pred = ovr.predict(X)
assert_array_equal(np.array(y_pred), np.array(y))
y_pred = ovr.decision_function(X)
assert_equal(np.unique(y_pred[:, -2:]), 1)
y_pred = ovr.predict_proba(X)
assert_array_equal(y_pred[:, -1], np.ones(X.shape[0]))
# y has a constantly absent label
y = np.zeros((10, 2))
y[5:, 0] = 1 # variable label
ovr = OneVsRestClassifier(LogisticRegression())
assert_warns(UserWarning, ovr.fit, X, y)
y_pred = ovr.predict_proba(X)
assert_array_equal(y_pred[:, -1], np.zeros(X.shape[0]))
示例12: balanceTrials
def balanceTrials(n_trials, randomize, factors, use_type='int'):
n_factors = len(factors)
n_levels = [0] * n_factors
min_trials = 1.0 #needs to be float or the later ceiling operation will fail
for f in range(0, n_factors):
n_levels[f] = len(factors[f])
min_trials *= n_levels[f] #simulates use of prod(n_levels) in the original code
N = math.ceil(n_trials / min_trials)
output = []
len1 = min_trials
len2 = 1
index = numpy.random.uniform(0, 1, N * min_trials).argsort()
for level, factor in zip(n_levels, factors):
len1 /= level
factor = numpy.array(factor, dtype=use_type)
out = numpy.kron(numpy.ones((N, 1)), numpy.kron(numpy.ones((len1, len2)), factor).reshape(min_trials,)).astype(use_type).reshape(N*min_trials,)
if randomize:
out = [out[i] for i in index]
len2 *= level
output.append(out)
return output
示例13: test_invalid_seed
def test_invalid_seed():
seed = np.ones((5, 5))
mask = np.ones((5, 5))
assert_raises(ValueError, reconstruction, seed * 2, mask,
method='dilation')
assert_raises(ValueError, reconstruction, seed * 0.5, mask,
method='erosion')
示例14: world2pix
def world2pix(self, lon, lat, energy, combine=False):
"""Convert world to pixel coordinates.
Parameters
----------
lon, lat, energy
Returns
-------
x, y, z or array with (x, y, z) as columns
"""
lon = lon.to('deg').value
lat = lat.to('deg').value
origin = 0 # convention for gammapy
x, y, _ = self.wcs.wcs_world2pix(lon, lat, 0, origin)
z = self.energy_axis.world2pix(energy)
shape = (x * y * z).shape
x = x * np.ones(shape)
y = y * np.ones(shape)
z = z * np.ones(shape)
if combine:
x = np.array(x).flat
y = np.array(y).flat
z = np.array(z).flat
return np.column_stack([z, y, x])
else:
return x, y, z
示例15: test_stratified_kfold_no_shuffle
def test_stratified_kfold_no_shuffle():
# Manually check that StratifiedKFold preserves the data ordering as much
# as possible on toy datasets in order to avoid hiding sample dependencies
# when possible
X, y = np.ones(4), [1, 1, 0, 0]
splits = StratifiedKFold(2).split(X, y)
train, test = next(splits)
assert_array_equal(test, [0, 2])
assert_array_equal(train, [1, 3])
train, test = next(splits)
assert_array_equal(test, [1, 3])
assert_array_equal(train, [0, 2])
X, y = np.ones(7), [1, 1, 1, 0, 0, 0, 0]
splits = StratifiedKFold(2).split(X, y)
train, test = next(splits)
assert_array_equal(test, [0, 1, 3, 4])
assert_array_equal(train, [2, 5, 6])
train, test = next(splits)
assert_array_equal(test, [2, 5, 6])
assert_array_equal(train, [0, 1, 3, 4])
# Check if get_n_splits returns the number of folds
assert_equal(5, StratifiedKFold(5).get_n_splits(X, y))