当前位置: 首页>>代码示例>>Python>>正文


Python numpy.negative函数代码示例

本文整理汇总了Python中numpy.negative函数的典型用法代码示例。如果您正苦于以下问题:Python negative函数的具体用法?Python negative怎么用?Python negative使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了negative函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_ufunc_out

    def test_ufunc_out(self):
        from numpy import array, negative, zeros, sin
        from math import sin as msin
        a = array([[1, 2], [3, 4]])
        c = zeros((2,2,2))
        b = negative(a + a, out=c[1])
        #test for view, and also test that forcing out also forces b
        assert (c[:, :, 1] == [[0, 0], [-4, -8]]).all()
        assert (b == [[-2, -4], [-6, -8]]).all()
        #Test broadcast, type promotion
        b = negative(3, out=a)
        assert (a == -3).all()
        c = zeros((2, 2), dtype=float)
        b = negative(3, out=c)
        assert b.dtype.kind == c.dtype.kind
        assert b.shape == c.shape
        a = array([1, 2])
        b = sin(a, out=c)
        assert(c == [[msin(1), msin(2)]] * 2).all()
        b = sin(a, out=c+c)
        assert (c == b).all()

        #Test shape agreement
        a = zeros((3,4))
        b = zeros((3,5))
        raises(ValueError, 'negative(a, out=b)')
        b = zeros((1,4))
        raises(ValueError, 'negative(a, out=b)')
开发者ID:Darriall,项目名称:pypy,代码行数:28,代码来源:test_outarg.py

示例2: test_rectangular

    def test_rectangular(self):
        lons = numpy.array(range(100)).reshape((10, 10))
        lats = numpy.negative(lons)

        mesh = RectangularMesh(lons, lats, depths=None)
        bounding_mesh = mesh._get_bounding_mesh()
        expected_lons = numpy.array([
            0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
            19, 29, 39, 49, 59, 69, 79, 89,
            99, 98, 97, 96, 95, 94, 93, 92, 91,
            90, 80, 70, 60, 50, 40, 30, 20, 10
        ])
        expected_lats = numpy.negative(expected_lons)
        self.assertTrue((bounding_mesh.lons == expected_lons).all())
        self.assertTrue((bounding_mesh.lats == expected_lats).all())
        self.assertIsNone(bounding_mesh.depths)

        depths = lons + 10
        mesh = RectangularMesh(lons, lats, depths)
        expected_depths = expected_lons + 10
        bounding_mesh = mesh._get_bounding_mesh()
        self.assertIsNotNone(bounding_mesh.depths)
        self.assertTrue((bounding_mesh.depths
                         == expected_depths.flatten()).all())

        bounding_mesh = mesh._get_bounding_mesh(with_depths=False)
        self.assertIsNone(bounding_mesh.depths)
开发者ID:pslh,项目名称:nhlib,代码行数:27,代码来源:mesh_test.py

示例3: testInitializerFunction

  def testInitializerFunction(self):
    value = [[-42], [133.7]]
    shape = [2, 1]
    with self.test_session():
      initializer = lambda: constant_op.constant(value)

      v1 = variables.Variable(initializer, dtype=dtypes.float32)
      self.assertEqual(shape, v1.get_shape())
      self.assertEqual(shape, v1.shape)
      self.assertAllClose(value, v1.initial_value.eval())
      with self.assertRaises(errors_impl.FailedPreconditionError):
        v1.eval()

      v2 = variables.Variable(
          math_ops.negative(v1.initialized_value()), dtype=dtypes.float32)
      self.assertEqual(v1.get_shape(), v2.get_shape())
      self.assertEqual(v1.shape, v2.shape)
      self.assertAllClose(np.negative(value), v2.initial_value.eval())

      # Once v2.initial_value.eval() has been called, v1 has effectively been
      # initialized.
      self.assertAllClose(value, v1.eval())

      with self.assertRaises(errors_impl.FailedPreconditionError):
        v2.eval()
      variables.global_variables_initializer().run()
      self.assertAllClose(np.negative(value), v2.eval())
开发者ID:j-min,项目名称:tensorflow,代码行数:27,代码来源:variables_test.py

示例4: test_negative

    def test_negative(self):
        from numpy import array, negative

        a = array([-5.0, 0.0, 1.0])
        b = negative(a)
        for i in range(3):
            assert b[i] == -a[i]

        a = array([-5.0, 1.0])
        b = negative(a)
        a[0] = 5.0
        assert b[0] == 5.0
        a = array(range(30))
        assert negative(a + a)[3] == -6

        a = array([[1, 2], [3, 4]])
        b = negative(a + a)
        assert (b == [[-2, -4], [-6, -8]]).all()

        class Obj(object):
            def __neg__(self):
                return "neg"

        x = Obj()
        assert type(negative(x)) is str
开发者ID:Qointum,项目名称:pypy,代码行数:25,代码来源:test_ufuncs.py

示例5: testInitializerFunction

  def testInitializerFunction(self):
    value = [[-42], [133.7]]
    shape = [2, 1]
    with self.test_session():
      initializer = lambda: tf.constant(value)
      with self.assertRaises(ValueError):
        # Checks that dtype must be specified.
        tf.Variable(initializer)

      v1 = tf.Variable(initializer, dtype=tf.float32)
      self.assertEqual(shape, v1.get_shape())
      self.assertAllClose(value, v1.initial_value.eval())
      with self.assertRaises(tf.errors.FailedPreconditionError):
        v1.eval()

      v2 = tf.Variable(tf.neg(v1.initialized_value()), dtype=tf.float32)
      self.assertEqual(v1.get_shape(), v2.get_shape())
      self.assertAllClose(np.negative(value), v2.initial_value.eval())

      # Once v2.initial_value.eval() has been called, v1 has effectively been
      # initialized.
      self.assertAllClose(value, v1.eval())

      with self.assertRaises(tf.errors.FailedPreconditionError):
        v2.eval()
      tf.initialize_all_variables().run()
      self.assertAllClose(np.negative(value), v2.eval())
开发者ID:0ruben,项目名称:tensorflow,代码行数:27,代码来源:variables_test.py

示例6: logpdf

def logpdf(x, nu, s2=1):
    """Log of the scaled inverse chi-squared probability density function.
    
    Parameters
    ----------
    x : array_like
        quantiles
    
    nu : array_like
        degrees of freedom
    
    s2 : array_like, optional
        scale (default 1)
    
    Returns
    -------
    logpdf : ndarray
        Log of the probability density function evaluated at `x`.
    
    """
    x = np.asarray(x)
    nu = np.asarray(nu)
    s2 = np.asarray(s2)
    nu_2 = nu/2
    y = np.log(x)
    y *= (nu_2 +1)
    np.negative(y, out=y)
    y -= (nu_2*s2)/x
    y += np.log(s2)*nu_2
    y -= gammaln(nu_2)
    y += np.log(nu_2)*nu_2
    return y
开发者ID:GeorgeMcIntire,项目名称:BDA_py_demos,代码行数:32,代码来源:sinvchi2.py

示例7: neg

def neg(target):
    a = pyext.Buffer(target)
    # in place transformation (see Python array ufuncs)
    N.negative(a[:],a[:])
    # must mark buffer content as dirty to update graph
    # (no explicit assignment occurred)
    a.dirty()
开发者ID:ASU-CompMethodsPhysics-PHY494,项目名称:final-digital-signal-processor,代码行数:7,代码来源:buffer.py

示例8: construct_uvn_frame

def construct_uvn_frame(n, u, b=None, flip_to_match_image=True):
    """ Returns an orthonormal 3x3 frame from a normal and one in-plane vector """

    n = normalized(n)
    u = normalized(np.array(u) - np.dot(n, u) * n)
    v = normalized_cross(n, u)

    # flip to match image orientation
    if flip_to_match_image:
        if abs(u[1]) > abs(v[1]):
            u, v = v, u
        if u[0] < 0:
            u = np.negative(u)
        if v[1] < 0:
            v = np.negative(v)
        if b is None:
            if n[2] < 0:
                n = np.negative(n)
        else:
            if np.dot(n, b) > 0:
                n = np.negative(n)

    # return uvn matrix, column major
    return np.matrix([
        [u[0], v[0], n[0]],
        [u[1], v[1], n[1]],
        [u[2], v[2], n[2]],
    ])
开发者ID:CV-IP,项目名称:opensurfaces,代码行数:28,代码来源:geom.py

示例9: forward_cpu

 def forward_cpu(self, inputs):
     self.retain_inputs((0, 1))
     x, gy = inputs
     gx = utils.force_array(numpy.sin(x))
     numpy.negative(gx, out=gx)
     gx *= gy
     return gx,
开发者ID:Fhrozen,项目名称:chainer,代码行数:7,代码来源:trigonometric.py

示例10: unmask_temperature

    def unmask_temperature(self, signal, order='nested', seed=None):
        """
        Given the harmonic sphere map ``signal`` as the underlying signal,
        provide a map where the mask has been removed and replaced with the
        contents of signal. Noise consistent with the noise properties
        of the observation (without the mask) will be added.
        """
        Nside, lmin, lmax = self.Nside, signal.lmin, signal.lmax
        
        random_state = as_random_state(seed)
        temperature = self.load_temperature_mutable(order)
        inverse_mask = (self.properties.load_mask_mutable(order) == 1).view(np.ndarray)
        np.negative(inverse_mask, inverse_mask) # invert the mask in-place

        # First, smooth the signal with the beam and pixel window
        smoothed_signal = self.properties.load_beam_transfer_matrix(lmin, lmax) * signal
        pixwin = load_temperature_pixel_window_matrix(Nside, lmin, lmax)
        smoothed_signal = pixwin * smoothed_signal

        # Create map from signal, and replace unmasked values in temperature map
        signal_map = smoothed_signal.to_pixel(self.Nside)
        signal_map.change_order_inplace(order)
        temperature[inverse_mask] = signal_map[inverse_mask]

        # Finally, add RMS to unmasked area
        rms_in_mask = self.properties.load_rms(order)[inverse_mask]
        temperature[inverse_mask] += random_state.normal(scale=rms_in_mask)
        return temperature
开发者ID:FairSky,项目名称:pycmb,代码行数:28,代码来源:observation.py

示例11: negateVal

def negateVal():
    """negate a boolean, change the sign of a float inplace"""
    Z=np.random.randint(0,2,100)
    np.logical_not(Z,out=Z)
    print Z
    W=np.random.uniform(-1.0,1.0,100)
    np.negative(Z,out=Z)
    print Z
开发者ID:HK-Zhang,项目名称:Corn,代码行数:8,代码来源:Numpy100.py

示例12: backward_cpu

 def backward_cpu(self, x, gy):
     gx = utils.force_array(numpy.square(x[0]))
     numpy.negative(gx, out=gx)
     gx += 1
     numpy.sqrt(gx, out=gx)
     numpy.reciprocal(gx, out=gx)
     gx *= gy[0]
     return gx,
开发者ID:KotaroSetoyama,项目名称:chainer,代码行数:8,代码来源:trigonometric.py

示例13: _quaternion_from_matrix

def _quaternion_from_matrix(matrix, isprecise=False):
    """Summary
    
    Args:
        matrix (TYPE): Description
        isprecise (bool, optional): Description
    
    Returns:
        TYPE: Description
    """
    M = np.array(matrix, dtype=np.float64, copy=False)[:4, :4]
    if isprecise:
        q = np.empty((4, ))
        t = np.trace(M)
        if t > M[3, 3]:
            q[0] = t
            q[3] = M[1, 0] - M[0, 1]
            q[2] = M[0, 2] - M[2, 0]
            q[1] = M[2, 1] - M[1, 2]
        else:
            i, j, k = 1, 2, 3
            if M[1, 1] > M[0, 0]:
                i, j, k = 2, 3, 1
            if M[2, 2] > M[i, i]:
                i, j, k = 3, 1, 2
            t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3]
            q[i] = t
            q[j] = M[i, j] + M[j, i]
            q[k] = M[k, i] + M[i, k]
            q[3] = M[k, j] - M[j, k]
        q *= 0.5 / math.sqrt(t * M[3, 3])
        # NEED MORMALIZE
    else:
        m00 = M[0, 0]
        m01 = M[0, 1]
        m02 = M[0, 2]
        m10 = M[1, 0]
        m11 = M[1, 1]
        m12 = M[1, 2]
        m20 = M[2, 0]
        m21 = M[2, 1]
        m22 = M[2, 2]
        # symmetric matrix K
        K = np.array([[m00-m11-m22, 0.0,         0.0,         0.0],
                      [m01+m10,     m11-m00-m22, 0.0,         0.0],
                      [m02+m20,     m12+m21,     m22-m00-m11, 0.0],
                      [m21-m12,     m02-m20,     m10-m01,     m00+m11+m22]])
        K /= 3.0
        # quaternion is eigenvector of K that corresponds to largest eigenvalue
        w, V = np.linalg.eigh(K)
        q = V[[3, 0, 1, 2], np.argmax(w)]
    if q[0] < 0.0:
        np.negative(q, q)
    n = np.linalg.norm(q)
    if n > 1.0:
        q = q/n
    # taken from ransformations.py so w first
    return (q[0], q[1:])
开发者ID:eruffaldi,项目名称:stereocalib,代码行数:58,代码来源:se3d.py

示例14: backProp_epoch

def backProp_epoch(I,T,W_IH,W_HO,A_O,
                   DeltaW_IH,DeltaW_HO,
                   net_H=None,net_O=None,A_H=None,
                   Delta_H=None,Delta_O=None,
                   sigma_H=(afs.sigmoid,afs.sigmoid_prime),
                   sigma_O=(afs.sigmoid,afs.sigmoid_prime),
                   errorF=(efs.sumSquaredError,efs.sumSquaredError_prime)):
    """
    net: node input function result
    A: node activation
    sigma: activation function
    errorF: ( error function(target,output),error function derivative(target,output) )
    """
    (M_H,M_I) = W_IH.shape; M_I-=1;
    (M_O,blah) = W_HO.shape;
    (M,N) = I.shape
    if net_H == None:
        net_H = np.empty((M_H,1))
    if net_O == None:
        net_O = np.empty((M_O,1))
    if A_H == None:
        A_H = np.empty_like(net_H)
    if Delta_H == None:
        Delta_H = np.empty_like(net_H)
    if Delta_O == None:
        Delta_O = np.empty_like(net_O)
    # compute hidden layer inputs
    np.dot(W_IH[:,:-1],I,net_H)            # net_H is M_H x N
    np.add(net_H,np.dot(W_IH[:,-1:],np.ones((1,N))),net_H) # bias
    # compute hidden layer activations
    sigma_H[0](net_H,A_H)               # A_H is M_H x N
    # compute output layer inputs
    np.dot(W_HO[:,:-1],A_H,net_O)
    np.add(net_O,np.dot(W_HO[:,-1:],np.ones((1,N))),net_O) # bias
    # compute output layer activations
    sigma_O[0](net_O,A_O)
    # compute output error
    errorVal = errorF[0](A_O,T)
    # compute output error gradient
    errorF[1](T,A_O,Delta_O)            # Delta_O holds tmp value
    np.negative(Delta_O,Delta_O)
    sigma_O[1](A_O,net_O)            # reusing net_O matrix as tmp storage
    np.multiply(Delta_O,net_O,Delta_O)
    # compute output weight update
    tmpA_H = np.append(A_H,np.ones((1,N)),axis=0) # add bias inputs
    np.dot(Delta_O,tmpA_H.T,DeltaW_HO)        # TODO: compute using tanspose for speed-up?
    # compute hidden error gradient
    sigma_H[1](A_H,Delta_H)           # Delta_H holds tmp value
    np.multiply(Delta_H,
                np.dot(W_HO[:,:-1].T,Delta_O),  # TODO: W^T*Delta_O too wasteful
                Delta_H)
    # compute hidden weight update
    tmpI = np.append(I,np.ones((1,N)),axis=0) # add bias inputs
    np.dot(Delta_H,tmpI.T,DeltaW_IH)          # TODO: compute using transpose for speed-up?
    # np.multiply(DeltaW_IH,alpha,DeltaW_IH) # apply learning rate
    # TODO: force garbage collection at key areas where temporaries are created
    return errorVal
开发者ID:danelliottster,项目名称:ANN,代码行数:57,代码来源:backProp.py

示例15: __neg__

 def __neg__(self):
     """
     return negated
     """
     self.A  = numpy.negative(self.A)
     self.bX = numpy.negative(self.bX)
     self.bY = numpy.negative(self.bY)
     self.bZ = numpy.negative(self.bZ)
     return self
开发者ID:bencesomogyi,项目名称:pyCFD,代码行数:9,代码来源:generic_operator.py


注:本文中的numpy.negative函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。