当前位置: 首页>>代码示例>>Python>>正文


Python numpy.nditer函数代码示例

本文整理汇总了Python中numpy.nditer函数的典型用法代码示例。如果您正苦于以下问题:Python nditer函数的具体用法?Python nditer怎么用?Python nditer使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了nditer函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: group_ref_color_atom_overlaps

    def group_ref_color_atom_overlaps(results):
        """
        Create a 3D masked array containing all overlap scores.

        Parameters
        ----------
        scores : array_like
            2D array containing reference molecule color atom overlap results.
        """
        # get maximum number of ref color atoms
        # don't use `for result in it` because that gives an array of size 1
        max_size = 0
        it = np.nditer(results, flags=['multi_index', 'refs_ok'])
        for _ in it:
            max_size = max(max_size, len(results[it.multi_index]))

        # build a masked array containing results
        # don't use data[it.multi_index][:result.size] because that assigns
        # to a view and not to data
        data = np.ma.masked_all((results.shape[:2] + (max_size,)), dtype=float)
        it = np.nditer(results, flags=['multi_index', 'refs_ok'])
        for _ in it:
            i, j = it.multi_index
            result = results[i, j]
            data[i, j, :result.size] = result
        return data
开发者ID:skearnes,项目名称:color-features,代码行数:26,代码来源:overlap.py

示例2: test_iter_allocate_output_subtype

def test_iter_allocate_output_subtype():
    # Make sure that the subtype with priority wins
    # 2018-04-29: moved here from core.tests.test_nditer, given the
    # matrix specific shape test.

    # matrix vs ndarray
    a = np.matrix([[1, 2], [3, 4]])
    b = np.arange(4).reshape(2, 2).T
    i = np.nditer([a, b, None], [],
                  [['readonly'], ['readonly'], ['writeonly', 'allocate']])
    assert_(type(i.operands[2]) is np.matrix)
    assert_(type(i.operands[2]) is not np.ndarray)
    assert_equal(i.operands[2].shape, (2, 2))

    # matrix always wants things to be 2D
    b = np.arange(4).reshape(1, 2, 2)
    assert_raises(RuntimeError, np.nditer, [a, b, None], [],
                  [['readonly'], ['readonly'], ['writeonly', 'allocate']])
    # but if subtypes are disabled, the result can still work
    i = np.nditer([a, b, None], [],
                  [['readonly'], ['readonly'],
                   ['writeonly', 'allocate', 'no_subtype']])
    assert_(type(i.operands[2]) is np.ndarray)
    assert_(type(i.operands[2]) is not np.matrix)
    assert_equal(i.operands[2].shape, (1, 2, 2))
开发者ID:chinaloryu,项目名称:numpy,代码行数:25,代码来源:test_interaction.py

示例3: launch_boolean_query

    def launch_boolean_query(self, query, num_results):
        doc_relevance_vector = np.zeros(len(self.doc_index.index))
        query_feature_vector = \
            helpers.create_doc_index(self.dictionary, helpers.docs2bows([query], self.dictionary)).index[0]
        iter_count = 0
        for doc_feature_vector in self.doc_index.index:
            if np.sum(query_feature_vector) > 0 and np.array_equal(
                    np.where((query_feature_vector > 0) & (doc_feature_vector > 0)),
                    np.where(query_feature_vector > 0)):
                doc_relevance_vector[iter_count] = 1
            iter_count += 1
        relevant_docs = np.where(doc_relevance_vector == 1)[0]
        if relevant_docs.size == 0:
            return []
        else:
            results_shown = 0
            for doc in np.nditer(relevant_docs):
                if results_shown < num_results:
                    print('[ID: ' + str(doc + 1) + '] ' + self.corpus[doc])
                results_shown += 1

            ranking = []
            for doc in np.nditer(relevant_docs):
                ranking.append((doc, 1))
            return ranking
开发者ID:ph1l337,项目名称:information-retrieval-system,代码行数:25,代码来源:searchablecorpus.py

示例4: _form_slip_xyz_file_string

 def _form_slip_xyz_file_string(self):
     _txt = ''
     for lon, lat, s in zip(np.nditer(self.lons),
                            np.nditer(self.lats),
                            np.nditer(self.slip)):
         _txt +='%f %f %f\n'%(lon, lat, s)
     return _txt
开发者ID:zy31415,项目名称:viscojapan,代码行数:7,代码来源:plot_slip.py

示例5: var_inner

 def var_inner(self,var_v1,var_v2):
     v1=[]
     v2=[]
     for m1,m2 in zip(var_v1,var_v2):
         v1=v1+[x for x in np.nditer(m1, op_flags=['readwrite'])]
         v2=v2+[x for x in np.nditer(m2, op_flags=['readwrite'])]
     return np.inner(v1,v2)
开发者ID:Vendea,项目名称:summer-research-2016,代码行数:7,代码来源:BFGS_NL.py

示例6: descend_weights_numeric

def descend_weights_numeric(cost, weights, reg, learn, step):
    """
    Gradient descent, for weights
    cost - objective function, not requiring parameters, without regularisation
    weights - their derivative will be approximated
    reg - regularisation factor
    learn - (negative) learning rate
    step - step size for derivative
    """
    derivative = []
    for arr in weights:
        der = zeros(arr.shape)
        it = nditer(arr, flags=['multi_index'], op_flags=['readwrite'])
        for value in it:
            old_val = value.copy()
            old_obj = cost()
            value[...] += step
            new_obj = cost()
            value[...] = old_val
            grad = (new_obj - old_obj)/step
            grad = add_reg(old_val, grad, reg)
            der[it.multi_index] = grad
        derivative.append(der)
    
    for n, arr in enumerate(weights):
        der = derivative[n]
        it = nditer(arr, flags=['multi_index'], op_flags=['readwrite']) 
        for value in it:
            value[...] = descend(value[...], der[it.multi_index]*learn)
开发者ID:guyemerson,项目名称:SentiMerge,代码行数:29,代码来源:latent.py

示例7: search

 def search(self, fn, top_n=10, sim_thresh=None):
     """
     retrieval face from database,
     return top_n similar faces' imgIDs, return None if failed
     """
     if top_n > len(self.data):
         top_n = len(self.data)
     aligned_fn = send2align(fn)
     aligned_arr = path2arr(aligned_fn)
     if aligned_arr is None:
         print "align none."
         return None
     deepIDfea = self.model.getID([aligned_arr])[0]
     sims = [cosine_similarity(deepIDfea, item[1])[0][0] for item in self.data]
     # print len(self.data), len(sims)
     for i in range(len(sims)):
         print sims[i], self.data[i][0]
     sort_index = np.argsort(-np.array(sims))
     result = []
     if sim_thresh is None:
         for index in np.nditer(sort_index):
             cur_id = self.data[index][0].split("-")[0]
             if cur_id not in result and len(result) < top_n:
                 result.append(cur_id)
         return result
     else:
         for index in np.nditer(sort_index):
             if sims[index] < sim_thresh:
                 break
             cur_id = self.data[index][0].split("-")[0]
             if cur_id not in result:
                 result.append(cur_id)
         return result
开发者ID:cyh24,项目名称:find-lost,代码行数:33,代码来源:face_align_client.py

示例8: __init__

  def __init__(self, maxResult=10, gridSpec=None, verbose=True):
    self.gridSpec   = gridSpec
    self.maxResult  = maxResult
    self.enableGrid = False
    self.verbose    = verbose

    # Calculate exact grid
    self.grid      = []

    gsTau     = self.gridSpec[0]
    gsS       = self.gridSpec[1]
    if len(gsTau) > 1 and len(gsS) > 1:
      self.enableGrid = True
      countTau  = 5
      countS    = 5
      if len(gsTau) > 2:
        countTau = int(gsTau[2])
      if len(gsS) > 2:
        countS = int(gsS[2])
      minTau    =  gsTau[0] - gsTau[1]
      maxTau    = (gsTau[0] + gsTau[1]) * (1+ (1/ (2*countTau)))
      minS      =  gsS[0] - gsS[1]
      maxS      = (gsS[0] + gsS[1])     * (1+ (1/ (2*countS)))
      tau       = np.arange(minTau, maxTau, (gsTau[1] * 2.0) / countTau)
      S         = np.arange(minS,   maxS,   (gsS[1] * 2.0)   / countS)
      for t in np.nditer(tau):
        for s in np.nditer(S):
          self.grid.append( np.array([t, s]) )

      self.dTau = tau[1] - tau[0]
      self.dS   = S[1]   - S[0]
      self.bounds = [ [minTau, maxTau], [minS, maxS] ]
开发者ID:FKlama,项目名称:hycud,代码行数:32,代码来源:Minimizer.py

示例9: run

    def run(self):

        # temperature iteration
        for dmu in np.nditer(self.delta_mu):
            data = []
            self.mu[0] += dmu
            self.mu[1] = -self.mu[0]
            self.x_[1] = self.x_1
            self.x_[0] = 1 - self.x_1
            print(' mu = {:06.4f}:'.format(self.mu[0].item(0)))

            # delta mu iteration
            for temp in np.nditer(self.temp):
                self.beta = np.float64(pow(self.bzc * temp, -1))

                # calculate
                self.__run()

                # push result into data
                data.append({'temp': temp.item(0), 'c': self.x_[1].item(0)})
                print('    T = {:06.3f}K,  c = {:06.6f},  count = {}'.
                      format(temp.item(0), self.x_[1].item(0), self.count))

            print('\n')
            # save result to output
            self.output['Results'].append(
                {'mu': self.mu[0].item(0), 'data': data})
            self.mu[0] -= dmu
开发者ID:TsumiNa,项目名称:CVM,代码行数:28,代码来源:tetraSquare.py

示例10: calc

    def calc(self, input):
        """
        Calculates the network output for the given input
        @param input A array of inputs [in1, in2,..]
        @return lastNetResult
        """

        lastNetResult = np.array(input)
        # save each layer in/output for training
        self.inputs = []
        self.outputs = []

        for i in range(len(self.layout) - 1):
            # append bias
            # self.outputFun(lastNetResult)
            lastNetResult = np.hstack((lastNetResult, [1]))

            self.inputs.append(lastNetResult)

            # calc result
            lastNetResult = np.dot(self.weights[i], lastNetResult)
            if i == len(self.layout) - 2:
                # different activation function for last layer
                lastNetResult = np.array(list(map(
                    self.last_layer_transfer, np.nditer(lastNetResult))))
            else:
                # lastNetResult = self.layer_transfer(lastNetResult)
                lastNetResult = np.array(list(map(
                    self.layer_transfer, np.nditer(lastNetResult))))

            self.outputs.append(lastNetResult)

        return lastNetResult
开发者ID:dtbinh,项目名称:praktikum,代码行数:33,代码来源:multi_layer.py

示例11: test_external_loop

 def test_external_loop(self):
     from numpy import arange, nditer, array
     a = arange(24).reshape(2, 3, 4)
     import sys
     if '__pypy__' in sys.builtin_module_names:
         raises(NotImplementedError, nditer, a, flags=['external_loop'])
         skip('nditer external_loop not implmented')
     r = []
     n = 0
     for x in nditer(a, flags=['external_loop']):
         r.append(x)
         n += 1
     assert n == 1
     assert (array(r) == range(24)).all()
     r = []
     n = 0
     for x in nditer(a, flags=['external_loop'], order='F'):
         r.append(x)
         n += 1
     assert n == 12
     assert (array(r) == [[ 0, 12], [ 4, 16], [ 8, 20], [ 1, 13], [ 5, 17], [ 9, 21], [ 2, 14], [ 6, 18], [10, 22], [ 3, 15], [ 7, 19], [11, 23]]).all()
     e = raises(ValueError, 'r[0][0] = 0')
     assert str(e.value) == 'assignment destination is read-only'
     r = []
     for x in nditer(a.T, flags=['external_loop'], order='F'):
         r.append(x)
     array_r = array(r)
     assert len(array_r.shape) == 2
     assert array_r.shape == (1,24)
     assert (array(r) == arange(24)).all()
开发者ID:yuyichao,项目名称:pypy,代码行数:30,代码来源:test_nditer.py

示例12: process

def process(self):
    # counts
    self.count += 1

    # calculate eta
    eta_sum = np.float64(0)
    dt_ = np.zeros((2, 2, 2, 2, 2, 2), np.float64)
    it = np.nditer(dt_, flags=['multi_index'])
    while not it.finished:
        i, j, k, l, m, n = it.multi_index
        dt_[i, j, k, l, m, n] = __eta_dt(self, i, j, k, l, m, n)
        eta_sum += dt_[i, j, k, l, m, n]
        it.iternext()

    ############################
    # normalization
    ############################
    self.checker = np.float64(0)

    # 4-body
    self.m41_ = np.zeros((2, 2, 2, 2), np.float64)

    # 3-body
    self.m31_ = np.zeros((2, 2, 2), np.float64)

    # pair
    self.m21_ = np.zeros((2, 2), np.float64)
    self.m22_ = np.zeros((2, 2), np.float64)
    m22_ = np.zeros((2, 2), np.float64)

    # point
    self.x_ = np.zeros((2), np.float64)

    it = np.nditer(dt_, flags=['multi_index'])
    while not it.finished:
        i, j, k, l, m, n = it.multi_index
        # print('self.zt_{} is: {}'.format(it.multi_index, self.zt_[i, j, k]))
        dt_[i, j, k, l, m, n] /= eta_sum
        self.checker += np.absolute(dt_[i, j, k, l, m, n] -
                                    self.dt_[i, j, k, l, m, n])

        # dt_
        self.dt_[i, j, k, l, m, n] = dt_[i, j, k, l, m, n]

        # m41_
        self.m41_[i, j, k, l] += self.dt_[i, j, k, l, m, n]

        # m31_
        self.m31_[i, m, k] += self.dt_[i, j, k, l, m, n]

        # m21_
        self.m21_[i, j] += self.dt_[i, j, k, l, m, n]

        # m22_
        self.m22_[j, n] += self.dt_[i, j, k, l, m, n]
        m22_[i, m] += self.dt_[i, j, k, l, m, n]

        # x_
        self.x_[i] += self.dt_[i, j, k, l, m, n]
        it.iternext()
开发者ID:TsumiNa,项目名称:CVM,代码行数:60,代码来源:process.py

示例13: buildDistanceMatrix

    def buildDistanceMatrix(self):
        for head, ngrams in self.head_clusters.iteritems():
            word_indices = []
            stmt_indices = []
            priority_indices = []
            feature_words = []
            sections = []
            dm_w_rows = []
            dm_s_rows = []
            dm_p_rows = []

            for ngram in ngrams:
                word_indices.append(ngram[3][1])
                stmt_indices.append(ngram[3][0])
                priority_indices.append(ngram[1])
                feature_words.append(ngram[0])
                sections.append(ngram[-1])

            word_indices_clone = word_indices
            stmt_indices_clone = stmt_indices
            priority_indices_clone = priority_indices

            for word_index, stmt_index, priority_index in zip(word_indices, stmt_indices, priority_indices):
                dm_w_row = []
                dm_s_row = []
                dm_p_row = []

                for word_index_clone, stmt_index_clone, priority_index_clone in zip(word_indices_clone, stmt_indices_clone, priority_indices_clone):
                    dm_w_row.append(fabs(((1 + word_index) * (1 + stmt_index)) - ((1 + word_index_clone) * (1 + stmt_index_clone))))
                    dm_s_row.append(fabs((1 + stmt_index) - (1 + stmt_index_clone)))
                    dm_p_row.append(fabs(float(priority_index) - float(priority_index_clone)))

                dm_w_rows.append(dm_w_row)
                dm_s_rows.append(dm_s_row)
                dm_p_rows.append(dm_p_row)

            dm_w = np.array(dm_w_rows)
            dm_s = np.array(dm_s_rows)
            dm_p = np.array(dm_p_rows)
            #print dm_w
            #print dm_s
            #print dm_p
            prox_mat = []

            for w_dist, s_dist, PI in zip(np.nditer(dm_w), np.nditer(dm_s), np.nditer(dm_p)):
                if PI == 0.0:
                    proximity_score = ((w_dist + len(np.unique(dm_s) * s_dist)) / (dm_w.shape[0] * len(np.unique(dm_s))))
                    prox_mat.append(proximity_score)
                else:
                    proximity_score = ((w_dist + len(np.unique(dm_s) * s_dist)) / (dm_w.shape[0] * len(np.unique(dm_s)))) * log10(10 * PI)
                    prox_mat.append(proximity_score)

            ps = np.array(prox_mat)
            ps = np.reshape(ps, dm_w.shape)
            #print ps

            for r, row in enumerate(ps):
                for i, ele in enumerate(row):
                    if ele == min(row):
                        self.f2.writerow([feature_words[r], priority_indices[r], 1 - np.min(row), feature_words[i], sections[r]])
开发者ID:arunenigma,项目名称:Thesis,代码行数:60,代码来源:proximity_finder.py

示例14: test_external_loop

 def test_external_loop(self):
     from numpy import arange, nditer, array
     a = arange(24).reshape(2, 3, 4)
     import sys
     r = []
     for x in nditer(a, flags=['external_loop']):
         r.append(x)
     assert len(r) == 1
     assert r[0].shape == (24,)
     assert (array(r) == range(24)).all()
     r = []
     for x in nditer(a, flags=['external_loop'], order='F'):
         r.append(x)
     assert len(r) == 12
     assert (array(r) == [[ 0, 12], [ 4, 16], [ 8, 20], [ 1, 13], [ 5, 17], [ 9, 21],
                          [ 2, 14], [ 6, 18], [10, 22], [ 3, 15], [ 7, 19], [11, 23],
                         ]).all()
     e = raises(ValueError, 'r[0][0] = 0')
     assert str(e.value) == 'assignment destination is read-only'
     r = []
     for x in nditer(a.T, flags=['external_loop'], order='F'):
         r.append(x)
     array_r = array(r)
     assert len(array_r.shape) == 2
     assert array_r.shape == (1,24)
     assert (array(r) == arange(24)).all()
开发者ID:Qointum,项目名称:pypy,代码行数:26,代码来源:test_nditer.py

示例15: rvs

  def rvs(self, loc=0, scale=1, size=1):
    """Random variates.

    Parameters
    ----------
    loc : float or np.ndarray
      0-D or 1-D tensor.
    scale : float or np.ndarray
      0-D or 1-D tensor, with all elements constrained to
      :math:`scale > 0`.
    size : int
      Number of random variable samples to return.

    Returns
    -------
    np.ndarray
      A np.ndarray of dimensions size x shape.
    """
    if not isinstance(loc, np.ndarray):
      loc = np.asarray(loc)
    if not isinstance(scale, np.ndarray):
      scale = np.asarray(scale)
    if len(loc.shape) == 0:
      return stats.norm.rvs(loc, scale, size=size)

    x = []
    for locidx, scaleidx in zip(np.nditer(loc), np.nditer(scale)):
      x += [stats.norm.rvs(locidx, scaleidx, size=size)]

    # Note this doesn't work for multi-dimensional sizes.
    x = np.asarray(x).transpose()
    return x
开发者ID:blei-lab,项目名称:edward,代码行数:32,代码来源:distributions.py


注:本文中的numpy.nditer函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。