本文整理汇总了Python中numpy.nanmin函数的典型用法代码示例。如果您正苦于以下问题:Python nanmin函数的具体用法?Python nanmin怎么用?Python nanmin使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了nanmin函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: voxelize
def voxelize(self, points):
if not self.voxelized:
# compute the boundary of the 3D points
Xmin = np.nanmin(points[0,:]) - self.margin
Xmax = np.nanmax(points[0,:]) + self.margin
Ymin = np.nanmin(points[1,:]) - self.margin
Ymax = np.nanmax(points[1,:]) + self.margin
Zmin = np.nanmin(points[2,:]) - self.margin
Zmax = np.nanmax(points[2,:]) + self.margin
self.min_x = Xmin
self.min_y = Ymin
self.min_z = Zmin
self.max_x = Xmax
self.max_y = Ymax
self.max_z = Zmax
# step size
self.step_x = (Xmax-Xmin) / self.grid_size
self.step_y = (Ymax-Ymin) / self.grid_size
self.step_z = (Zmax-Zmin) / self.grid_size
self.voxelized = True
# compute grid indexes
indexes = np.zeros_like(points, dtype=np.float32)
indexes[0,:] = np.floor((points[0,:] - self.min_x) / self.step_x)
indexes[1,:] = np.floor((points[1,:] - self.min_y) / self.step_y)
indexes[2,:] = np.floor((points[2,:] - self.min_z) / self.step_z)
# crash the grid indexes
# grid_indexes = indexes[0,:] * self.grid_size * self.grid_size + indexes[1,:] * self.grid_size + indexes[2,:]
# I = np.isnan(grid_indexes)
# grid_indexes[I] = -1
# grid_indexes = grid_indexes.reshape(self.height, self.width).astype(np.int32)
return indexes
示例2: normalizeFloatImage3
def normalizeFloatImage3(floatImage):
mn_0 = np.nanmin(np.nanmin(floatImage[:, :,1]))
mx_0 = np.nanmax(np.nanmax(floatImage[:, :, 1]))
rows = floatImage.shape[0]
cols = floatImage.shape[1]
mn_0 = 1000
mx_0 =-1000
for r in range(rows):
for c in range(cols):
if floatImage[r,c, 2] <= 0:
mn_0 = mn_0 if mn_0 <= floatImage[r,c, 1 ] else floatImage[r,c, 1 ]
mx_0 = mx_0 if mx_0 >= floatImage[r,c, 1 ] else floatImage[r,c, 1 ]
fctr_0 = 255.0/(mx_0 - mn_0)
for r in range(rows):
for c in range(cols):
if floatImage[r,c, 2] <= 0:
floatImage[r,c, 1] = (floatImage[r,c, 1] - mn_0) * fctr_0
else:
floatImage[r,c, 1]=0
print "mn_0: ", mn_0, " mx_0: ", mx_0
示例3: rescale_to_depth_image
def rescale_to_depth_image(original_image, opencv_image):
nan_max = np.nanmax(original_image.pixels[..., 2])
nan_min = np.nanmin(original_image.pixels[..., 2])
depth_pixels = opencv_image.astype(np.float) / 255.0
depth_pixels = rescale(depth_pixels, 0.0, 1.0, nan_min, nan_max)
depth_pixels[np.isclose(np.nanmin(depth_pixels), depth_pixels)] = np.nan
return depth_pixels
示例4: _get_Tp_limits
def _get_Tp_limits(self):
"""Get the limits for the graphs in temperature and pressure, based on
SI units: [Tmin, Tmax, pmin, pmax]"""
T_lo,T_hi,P_lo,P_hi = self.limits
Ts_lo,Ts_hi = self._get_sat_bounds(CoolProp.iT)
Ps_lo,Ps_hi = self._get_sat_bounds(CoolProp.iP)
if T_lo is None: T_lo = 0.0
elif T_lo < self.ID_FACTOR: T_lo *= Ts_lo
if T_hi is None: T_hi = 1e6
elif T_hi < self.ID_FACTOR: T_hi *= Ts_hi
if P_lo is None: P_lo = 0.0
elif P_lo < self.ID_FACTOR: P_lo *= Ps_lo
if P_hi is None: P_hi = 1e10
elif P_hi < self.ID_FACTOR: P_hi *= Ps_hi
try: T_lo = np.nanmax([T_lo, self._state.trivial_keyed_output(CoolProp.iT_min)])
except: pass
try: T_hi = np.nanmin([T_hi, self._state.trivial_keyed_output(CoolProp.iT_max)])
except: pass
try: P_lo = np.nanmax([P_lo, self._state.trivial_keyed_output(CoolProp.iP_min)])
except: pass
try: P_hi = np.nanmin([P_hi, self._state.trivial_keyed_output(CoolProp.iP_max)])
except: pass
return [T_lo,T_hi,P_lo,P_hi]
示例5: calc_norm_summary_tables
def calc_norm_summary_tables(accuracy_tbl, time_tbl):
"""
Calculate normalized performance/ranking summary, as numpy
matrices as usual for convenience, and matrices of additional
statistics (min, max, percentiles, etc.)
Here normalized means relative to the best which gets a 1, all
others get the ratio resulting from dividing by the performance of
the best.
"""
# Min across all minimizers, i.e. for each fit problem what is the lowest chi-squared and the lowest time
min_sum_err_sq = np.nanmin(accuracy_tbl, 1)
min_runtime = np.nanmin(time_tbl, 1)
# create normalised tables
norm_acc_rankings = accuracy_tbl / min_sum_err_sq[:, None]
norm_runtimes = time_tbl / min_runtime[:, None]
summary_cells_acc = np.array([np.nanmin(norm_acc_rankings, 0),
np.nanmax(norm_acc_rankings, 0),
stats.nanmean(norm_acc_rankings, 0),
stats.nanmedian(norm_acc_rankings, 0)
])
summary_cells_runtime = np.array([np.nanmin(norm_runtimes, 0),
np.nanmax(norm_runtimes, 0),
stats.nanmean(norm_runtimes, 0),
stats.nanmedian(norm_runtimes, 0)
])
return norm_acc_rankings, norm_runtimes, summary_cells_acc, summary_cells_runtime
示例6: plotLL
def plotLL(fname='out4.npy'):
plt.figure()
h= np.linspace(0,1,21)
g= np.linspace(0,1,21)
m=np.linspace(0,2,21)
d=np.linspace(0,2,21)
out=np.load(fname)
print np.nanmax(out),np.nanmin(out)
rang=np.nanmax(out)-np.nanmin(out)
maxloc= np.squeeze(np.array((np.nanmax(out)==out).nonzero()))
H,G=np.meshgrid(h,g)
print maxloc
for mm in range(m.size/2):
for dd in range(d.size/2):
plt.subplot(10,10,(9-mm)*10+dd+1)
plt.pcolormesh(h,g,out[:,:,mm*2,dd*2].T,
vmax=np.nanmax(out),vmin=np.nanmax(out)-rang/4.)
plt.gca().set_xticks([])
plt.gca().set_yticks([])
if mm==maxloc[2]/2 and dd==maxloc[3]/2:
plt.plot(h[maxloc[0]],g[maxloc[1]],'ow',ms=8)
if dd==0:
print mm,dd
plt.ylabel('%.1f'%m[mm*2])
if mm==0: plt.xlabel('%.1f'%d[dd*2])
plt.title(fname[:6])
示例7: draw_hmap_old
def draw_hmap_old(hmap, yvals, fname=None):
"""
Plot a matrix as a heat map and write an image file.
:param hmap: Heat map matrix.
:param yvals: Heat map Y labels (e.g. amino acid names).
:param fname: Destination image file.
"""
if np.nanmax(hmap) > abs(np.nanmin(hmap)):
vmax = np.nanmax(hmap)
vmin = -np.nanmax(hmap)
else:
vmax = abs(np.nanmin(hmap))
vmin = np.nanmin(hmap)
fig = plt.figure()
plt.figure(figsize=(20,10))
plt.imshow(hmap, cmap='RdBu', interpolation = 'nearest',aspect='auto',vmin = vmin ,vmax = vmax )
plt.xlim(0, hmap.shape[1])
plt.ylim(0, hmap.shape[0])
ax = plt.gca()
fig.set_facecolor('white')
ax.set_xlim((-0.5, hmap.shape[1] -0.5))
ax.set_ylim((-0.5, hmap.shape[0] -0.5))
ax.set_yticks([x for x in xrange(0, hmap.shape[0])])
ax.set_yticklabels(yvals)
ax.set_xticks(range(0,76,5))
ax.set_xticklabels(range(2,76,5)+['STOP'])
ax.set_ylabel('Residue')
ax.set_xlabel('Ub Sequence Position')
cb = plt.colorbar()
cb.set_clim(vmin=vmin, vmax=vmax)
cb.set_label('Relative Fitness')
if fname is not None:
plt.savefig(fname, bbox_inches='tight')
return fig
示例8: TestPlot
def TestPlot(fig=None):
A = numpy.array([1,2,3,4,2,5,8,3,2,3,5,6])
B = numpy.array([8,7,3,6,4,numpy.nan,9,3,7,numpy.nan,2,4])
C = numpy.array([6,3,4,7,2,1,1,7,8,4,3,2])
D = numpy.array([5,2,4,5,3,8,2,5,3,5,6,8])
# A work around to get the histograms overplotted with each other to overlap correctly;
histrangelist = [(numpy.nanmin(A),numpy.nanmax(A)),(numpy.nanmin(B),numpy.nanmax(B)),
(numpy.nanmin(C),numpy.nanmax(C)),(numpy.nanmin(D),numpy.nanmax(D))]
data = numpy.array([A,B,C,D])
labels = ['A','3','C','D']
fig = GridPlot(data,labels=labels, no_tick_labels=True, color='black',
hist=True, histbins=3, histloc='tl', histrangelist=histrangelist, fig=None)
# Data of note to plot in different color
A2 = numpy.array([1,2,3,4])
B2 = numpy.array([8,7,3,6])
C2 = numpy.array([6,3,4,7])
D2 = numpy.array([5,2,4,5])
data2 = numpy.array([A2,B2,C2,D2])
fig = GridPlot(data2,labels=labels, no_tick_labels=True, color='red',
hist=True, histbins=3, histloc='tr', histrangelist=histrangelist, fig=fig)
return fig
示例9: bin_fit
def bin_fit(x, y, buckets=3):
assert buckets in [3,25]
xstd=np.nanstd(x)
if buckets==3:
binlimits=[np.nanmin(x), -xstd/2.0,xstd/2.0 , np.nanmax(x)]
elif buckets==25:
steps=xstd/4.0
binlimits=np.arange(-xstd*3.0, xstd*3.0, steps)
binlimits=[np.nanmin(x)]+list(binlimits)+[np.nanmax(x)]
fit_y=[]
err_y=[]
x_values_to_plot=[]
for binidx in range(len(binlimits))[1:]:
lower_bin_x=binlimits[binidx-1]
upper_bin_x=binlimits[binidx]
x_values_to_plot.append(np.mean([lower_bin_x, upper_bin_x]))
y_in_bin=[y[idx] for idx in range(len(y)) if x[idx]>=lower_bin_x and x[idx]<upper_bin_x]
fit_y.append(np.nanmedian(y_in_bin))
err_y.append(np.nanstd(y_in_bin))
## no zeros
return (binlimits, x_values_to_plot, fit_y, err_y)
示例10: plot_nontarget_betas_n_back
def plot_nontarget_betas_n_back(t_vols_n_back_beta_1, b_vols_smooth_n_back, in_brain_mask, brain_structure, nice_cmap, n_back):
beta_index = 1
b_vols_smooth_n_back[~in_brain_mask] = np.nan
t_vols_n_back_beta_1[~in_brain_mask] = np.nan
min_val = np.nanmin(b_vols_smooth_n_back[...,(40,50,60),beta_index])
max_val = np.nanmax(b_vols_smooth_n_back[...,(40,50,60),beta_index])
plt.figure()
for map_index, depth in (((3,2,1), 40),((3,2,3), 50),((3,2,5), 60)):
plt.subplot(*map_index)
plt.title("z=%d,%s" % (depth, n_back + "-back nontarget,beta values"))
plt.imshow(brain_structure[...,depth], alpha=0.5)
plt.imshow(b_vols_smooth_n_back[...,depth,beta_index], cmap=nice_cmap, alpha=0.5, vmin=min_val, vmax=max_val)
plt.colorbar()
plt.tight_layout()
t_min_val = np.nanmin(t_vols_n_back_beta_1[...,(40,50,60)])
t_max_val = np.nanmax(t_vols_n_back_beta_1[...,(40,50,60)])
for map_index, depth in (((3,2,2), 40),((3,2,4), 50),((3,2,6), 60)):
plt.subplot(*map_index)
plt.title("z=%d,%s" % (depth, n_back + "-back nontarget,t values"))
plt.imshow(brain_structure[...,depth], alpha=0.5)
plt.imshow(t_vols_n_back_beta_1[...,depth], cmap=nice_cmap, alpha=0.5, vmin=t_min_val, vmax=t_max_val)
plt.colorbar()
plt.tight_layout()
plt.savefig(os.path.join(output_filename, "sub011_nontarget_betas_%s_back.png" % (n_back)), format='png', dpi=500)
示例11: callback_function
def callback_function(self,
optimiser_output,
minimise_function_result,
was_accepted):
if not(was_accepted):
return
if self.current_success_number == 0:
# First result
self.successful_results[0] = minimise_function_result
self.current_success_number = 1
elif (minimise_function_result >=
np.nanmin(self.successful_results) + self.confidence):
# Reject result
0
elif (minimise_function_result >=
np.nanmin(self.successful_results) - self.confidence):
# Agreeing result
self.successful_results[
self.current_success_number
] = minimise_function_result
self.current_success_number += 1
elif (minimise_function_result <
np.nanmin(self.successful_results) - self.confidence):
# New result
self.successful_results[0] = minimise_function_result
self.current_success_number = 1
if self.current_success_number >= self.n:
return True
示例12: plot_noise_regressor_betas
def plot_noise_regressor_betas(b_vols_smooth, t_vols_beta_6_to_9, brain_structure, in_brain_mask, nice_cmap):
plt.figure()
min_val = np.nanmin(b_vols_smooth[...,40,(6,7,9)])
max_val = np.nanmax(b_vols_smooth[...,40,(6,7,9)])
plt.subplot(3,2,1)
plt.title("z=%d,%s" % (40, "linear drift,betas"))
b_vols_smooth[~in_brain_mask] = np.nan
plt.imshow(brain_structure[...,40], alpha=0.5)
plt.imshow(b_vols_smooth[...,40,6], cmap=nice_cmap, alpha=0.5, vmin=min_val, vmax=max_val)
plt.colorbar()
plt.tight_layout()
plt.subplot(3,2,3)
plt.title("z=%d,%s" % (40, "quadratic drift,betas"))
b_vols_smooth[~in_brain_mask] = np.nan
plt.imshow(brain_structure[...,40], alpha=0.5)
plt.imshow(b_vols_smooth[...,40,7], cmap=nice_cmap, alpha=0.5, vmin=min_val, vmax=max_val)
plt.colorbar()
plt.tight_layout()
plt.subplot(3,2,5)
plt.title("z=%d,%s" % (40, "second PC,betas"))
b_vols_smooth[~in_brain_mask] = np.nan
plt.imshow(brain_structure[...,40], alpha=0.5)
plt.imshow(b_vols_smooth[...,40,9], cmap=nice_cmap, alpha=0.5, vmin=min_val, vmax=max_val)
plt.colorbar()
plt.tight_layout()
t_vols_beta_6_to_9[0][~in_brain_mask] = np.nan
t_vols_beta_6_to_9[1][~in_brain_mask] = np.nan
t_vols_beta_6_to_9[3][~in_brain_mask] = np.nan
t_min_val = np.nanmin([t_vols_beta_6_to_9[0][...,40], t_vols_beta_6_to_9[1][...,40], t_vols_beta_6_to_9[3][...,40]])
t_max_val = np.nanmax([t_vols_beta_6_to_9[0][...,40], t_vols_beta_6_to_9[1][...,40], t_vols_beta_6_to_9[3][...,40]])
plt.subplot(3,2,2)
plt.title("z=%d,%s" % (40, "linear drift,t values"))
plt.imshow(brain_structure[...,40], alpha=0.5)
plt.imshow(t_vols_beta_6_to_9[0][...,40], cmap=nice_cmap, alpha=0.5, vmin=t_min_val, vmax=t_max_val)
plt.colorbar()
plt.tight_layout()
plt.subplot(3,2,4)
plt.title("z=%d,%s" % (40, "quadratic drift,t values"))
plt.imshow(brain_structure[...,40], alpha=0.5)
plt.imshow(t_vols_beta_6_to_9[1][...,40], cmap=nice_cmap, alpha=0.5, vmin=t_min_val, vmax=t_max_val)
plt.colorbar()
plt.tight_layout()
plt.subplot(3,2,6)
plt.title("z=%d,%s" % (40, "second PC,t values"))
plt.imshow(brain_structure[...,40], alpha=0.5)
plt.imshow(t_vols_beta_6_to_9[3][...,40], cmap=nice_cmap, alpha=0.5, vmin=t_min_val, vmax=t_max_val)
plt.colorbar()
plt.tight_layout()
plt.savefig(os.path.join(output_filename, "sub001_noise_regressors_betas_map.png"), format='png', dpi=500)
示例13: __call__
def __call__(self, transform_xy, x1, y1, x2, y2):
"""
get extreme values.
x1, y1, x2, y2 in image coordinates (0-based)
nx, ny : number of divisions in each axis
"""
x_, y_ = np.linspace(x1, x2, self.nx), np.linspace(y1, y2, self.ny)
x, y = np.meshgrid(x_, y_)
lon, lat = transform_xy(np.ravel(x), np.ravel(y))
# iron out jumps, but algorithm should be improved.
# This is just naive way of doing and my fail for some cases.
# Consider replacing this with numpy.unwrap
# We are ignoring invalid warnings. They are triggered when
# comparing arrays with NaNs using > We are already handling
# that correctly using np.nanmin and np.nanmax
with np.errstate(invalid='ignore'):
if self.lon_cycle is not None:
lon0 = np.nanmin(lon)
lon -= 360. * ((lon - lon0) > 180.)
if self.lat_cycle is not None:
lat0 = np.nanmin(lat)
lat -= 360. * ((lat - lat0) > 180.)
lon_min, lon_max = np.nanmin(lon), np.nanmax(lon)
lat_min, lat_max = np.nanmin(lat), np.nanmax(lat)
lon_min, lon_max, lat_min, lat_max = \
self._adjust_extremes(lon_min, lon_max, lat_min, lat_max)
return lon_min, lon_max, lat_min, lat_max
示例14: generate_artist
def generate_artist(self):
container=self.get_container()
if self.isempty() is False:
return
x, y = self._eval_xy() # this handles "use_var"
lp=self.getp("loaded_property")
if True:
x, y = self.getp(("x", "y"))
if y is None: return
if x is None: return
if (x is not None and
y is not None):
self._data_extent=[np.nanmin(x), np.nanmax(x),
np.nanmin(y), np.nanmax(y)]
if len(y.shape) == 1:
kywds = self._var["kywds"]
args, self._tri = tri_args(x, y, self._tri)
kywds['mask'] = self.getp('mask')
kywds['linestyle'] = self.getp('linestyle')
kywds['linewidth'] = self.getp('linewidth')
kywds['color'] = self.getp('color')
a = triplot(container, *args, **kywds)
self.set_artist(a[0])
self._other_artists = a[1:]
if lp is not None:
for i in range(0, len(lp)):
self.set_artist_property(self._artists[i], lp[i])
self.delp("loaded_property")
self.set_rasterized()
示例15: acquire_data
def acquire_data(self, var_name=None, slice_=()):
if var_name in self._variables:
vars = [var_name]
else:
vars = self._variables
if not isinstance(slice_, tuple): slice_ = (slice_,)
for vn in vars:
var = self._data_array[vn]
ndims = len(var.shape)
# Ensure the slice_ is the appropriate length
if len(slice_) < ndims:
slice_ += (slice(None),) * (ndims-len(slice_))
arri = ArrayIterator(var, self._block_size)[slice_]
for d in arri:
if d.dtype.char is "S":
# Obviously, we can't get the range of values for a string data type!
rng = None
elif isinstance(d, numpy.ma.masked_array):
# TODO: This is a temporary fix because numpy 'nanmin' and 'nanmax'
# are currently broken for masked_arrays:
# http://mail.scipy.org/pipermail/numpy-discussion/2011-July/057806.html
dc = d.compressed()
if dc.size == 0:
rng = None
else:
rng = (numpy.nanmin(dc), numpy.nanmax(dc))
else:
rng = (numpy.nanmin(d), numpy.nanmax(d))
yield vn, arri.curr_slice, rng, d
return