本文整理汇总了Python中numpy.nanmax函数的典型用法代码示例。如果您正苦于以下问题:Python nanmax函数的具体用法?Python nanmax怎么用?Python nanmax使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了nanmax函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __call__
def __call__(self, transform_xy, x1, y1, x2, y2):
"""
get extreme values.
x1, y1, x2, y2 in image coordinates (0-based)
nx, ny : number of divisions in each axis
"""
x_, y_ = np.linspace(x1, x2, self.nx), np.linspace(y1, y2, self.ny)
x, y = np.meshgrid(x_, y_)
lon, lat = transform_xy(np.ravel(x), np.ravel(y))
# iron out jumps, but algorithm should be improved.
# This is just naive way of doing and my fail for some cases.
# Consider replacing this with numpy.unwrap
# We are ignoring invalid warnings. They are triggered when
# comparing arrays with NaNs using > We are already handling
# that correctly using np.nanmin and np.nanmax
with np.errstate(invalid='ignore'):
if self.lon_cycle is not None:
lon0 = np.nanmin(lon)
lon -= 360. * ((lon - lon0) > 180.)
if self.lat_cycle is not None:
lat0 = np.nanmin(lat)
lat -= 360. * ((lat - lat0) > 180.)
lon_min, lon_max = np.nanmin(lon), np.nanmax(lon)
lat_min, lat_max = np.nanmin(lat), np.nanmax(lat)
lon_min, lon_max, lat_min, lat_max = \
self._adjust_extremes(lon_min, lon_max, lat_min, lat_max)
return lon_min, lon_max, lat_min, lat_max
示例2: _set_minmax
def _set_minmax(self):
data = self._get_fast_data()
try:
self.maxval = numpy.nanmax(data)
self.minval = numpy.nanmin(data)
except Exception:
self.maxval = 0
self.minval = 0
# TODO: see if there is a faster way to ignore infinity
try:
if numpy.isfinite(self.maxval):
self.maxval_noinf = self.maxval
else:
self.maxval_noinf = numpy.nanmax(data[numpy.isfinite(data)])
except:
self.maxval_noinf = self.maxval
try:
if numpy.isfinite(self.minval):
self.minval_noinf = self.minval
else:
self.minval_noinf = numpy.nanmin(data[numpy.isfinite(data)])
except:
self.minval_noinf = self.minval
示例3: summary
def summary():
# read sonde data
for sites in [[0],[1],[2]]:
slist,snames=read_diff_events(sites=sites)
ecount = [len(s.einds) for s in slist]
mintp = [np.nanmin(s.tp) for s in slist]
meantp = [np.nanmean(s.tp) for s in slist]
maxtp = [np.nanmax(s.tp) for s in slist]
head="%9s"%slist[0].name
ecount = "events "
meantp = "mean tph "
minmax = "tph bound"
for sonde, sname in zip(slist,snames):
head=head+'| %16s'%sname
ecount=ecount+'| %16d'%len(sonde.einds)
meantp=meantp+'| %16.2f'%np.nanmean(sonde.tp)
minmax=minmax+'| %7.2f,%7.2f '%(np.nanmin(sonde.tp),np.nanmax(sonde.tp))
print("")
print(head)
print(ecount)
print(meantp)
print(minmax)
示例4: _get_Tp_limits
def _get_Tp_limits(self):
"""Get the limits for the graphs in temperature and pressure, based on
SI units: [Tmin, Tmax, pmin, pmax]"""
T_lo,T_hi,P_lo,P_hi = self.limits
Ts_lo,Ts_hi = self._get_sat_bounds(CoolProp.iT)
Ps_lo,Ps_hi = self._get_sat_bounds(CoolProp.iP)
if T_lo is None: T_lo = 0.0
elif T_lo < self.ID_FACTOR: T_lo *= Ts_lo
if T_hi is None: T_hi = 1e6
elif T_hi < self.ID_FACTOR: T_hi *= Ts_hi
if P_lo is None: P_lo = 0.0
elif P_lo < self.ID_FACTOR: P_lo *= Ps_lo
if P_hi is None: P_hi = 1e10
elif P_hi < self.ID_FACTOR: P_hi *= Ps_hi
try: T_lo = np.nanmax([T_lo, self._state.trivial_keyed_output(CoolProp.iT_min)])
except: pass
try: T_hi = np.nanmin([T_hi, self._state.trivial_keyed_output(CoolProp.iT_max)])
except: pass
try: P_lo = np.nanmax([P_lo, self._state.trivial_keyed_output(CoolProp.iP_min)])
except: pass
try: P_hi = np.nanmin([P_hi, self._state.trivial_keyed_output(CoolProp.iP_max)])
except: pass
return [T_lo,T_hi,P_lo,P_hi]
示例5: calc_norm_summary_tables
def calc_norm_summary_tables(accuracy_tbl, time_tbl):
"""
Calculate normalized performance/ranking summary, as numpy
matrices as usual for convenience, and matrices of additional
statistics (min, max, percentiles, etc.)
Here normalized means relative to the best which gets a 1, all
others get the ratio resulting from dividing by the performance of
the best.
"""
# Min across all minimizers, i.e. for each fit problem what is the lowest chi-squared and the lowest time
min_sum_err_sq = np.nanmin(accuracy_tbl, 1)
min_runtime = np.nanmin(time_tbl, 1)
# create normalised tables
norm_acc_rankings = accuracy_tbl / min_sum_err_sq[:, None]
norm_runtimes = time_tbl / min_runtime[:, None]
summary_cells_acc = np.array([np.nanmin(norm_acc_rankings, 0),
np.nanmax(norm_acc_rankings, 0),
stats.nanmean(norm_acc_rankings, 0),
stats.nanmedian(norm_acc_rankings, 0)
])
summary_cells_runtime = np.array([np.nanmin(norm_runtimes, 0),
np.nanmax(norm_runtimes, 0),
stats.nanmean(norm_runtimes, 0),
stats.nanmedian(norm_runtimes, 0)
])
return norm_acc_rankings, norm_runtimes, summary_cells_acc, summary_cells_runtime
示例6: classify
def classify(request):
C = json.loads(request.POST["C"])
try:
features, labels = get_multi_features(request)
except ValueError as e:
return HttpResponse(json.dumps({"status": e.message}))
try:
kernel = get_kernel(request, features)
except ValueError as e:
return HttpResponse(json.dumps({"status": e.message}))
learn = "No"
values=[]
try:
domain = json.loads(request.POST['axis_domain'])
x, y, z = svm.classify_svm(sg.GMNPSVM, features, labels, kernel, domain, learn, values, C, False)
except Exception as e:
return HttpResponse(json.dumps({"status": repr(e)}))
# z = z + np.random.rand(*z.shape) * 0.01
z_max = np.nanmax(z)
z_min = np.nanmin(z)
z_delta = 0.1*(np.nanmax(z)-np.nanmin(z))
data = {"status": "ok",
"domain": [z_min-z_delta, z_max+z_delta],
"max": z_max+z_delta,
"min": z_min-z_delta,
"z": z.tolist()}
return HttpResponse(json.dumps(data))
示例7: show
def show(self,**kwargs):
display = kwargs.get('display', True)
show_layers = kwargs.get('show_layers',self.layers)
try:
show_layers=sorted(show_layers)
except TypeError:
show_layers=[show_layers]
extent=kwargs.get('extent',
max_axis(*tuple(_image.axis for _image in self.image_sorted[self.layers[0]])))
vmin=kwargs.get('vmin')
vmax=kwargs.get('vmax')
fig = plt.figure(figsize=(8, 8*abs((extent[3]-extent[2])*1./(extent[1]-extent[0]))))
for layer in show_layers:
for image in self.image_sorted[layer]:
if layer==show_layers[0] and image==self.image_sorted[layer][0]:
if not vmin:
kwargs['vmin']=np.nanmin(image.image)
vmin=np.nanmin(image.image)
if not vmax:
kwargs['vmax']=np.nanmax(image.image)
vmax=np.nanmax(image.image)
image.show(hold=True,**kwargs)
else:
image.show(hold=True,vmin=vmin,vmax=vmax,scalebar='off',colorbar='off')
plt.xlim(extent[:2])
plt.ylim(extent[-2:])
if display:
plt.show()
else:
return fig
示例8: bin_fit
def bin_fit(x, y, buckets=3):
assert buckets in [3,25]
xstd=np.nanstd(x)
if buckets==3:
binlimits=[np.nanmin(x), -xstd/2.0,xstd/2.0 , np.nanmax(x)]
elif buckets==25:
steps=xstd/4.0
binlimits=np.arange(-xstd*3.0, xstd*3.0, steps)
binlimits=[np.nanmin(x)]+list(binlimits)+[np.nanmax(x)]
fit_y=[]
err_y=[]
x_values_to_plot=[]
for binidx in range(len(binlimits))[1:]:
lower_bin_x=binlimits[binidx-1]
upper_bin_x=binlimits[binidx]
x_values_to_plot.append(np.mean([lower_bin_x, upper_bin_x]))
y_in_bin=[y[idx] for idx in range(len(y)) if x[idx]>=lower_bin_x and x[idx]<upper_bin_x]
fit_y.append(np.nanmedian(y_in_bin))
err_y.append(np.nanstd(y_in_bin))
## no zeros
return (binlimits, x_values_to_plot, fit_y, err_y)
示例9: test_threshold_filter_nan
def test_threshold_filter_nan(self):
src = self.make_src(nan=True)
self.e.add_source(src)
threshold = Threshold()
self.e.add_filter(threshold)
self.assertEqual(np.nanmin(src.scalar_data), np.nanmin(threshold.outputs[0].point_data.scalars.to_array()))
self.assertEqual(np.nanmax(src.scalar_data), np.nanmax(threshold.outputs[0].point_data.scalars.to_array()))
示例10: TestPlot
def TestPlot(fig=None):
A = numpy.array([1,2,3,4,2,5,8,3,2,3,5,6])
B = numpy.array([8,7,3,6,4,numpy.nan,9,3,7,numpy.nan,2,4])
C = numpy.array([6,3,4,7,2,1,1,7,8,4,3,2])
D = numpy.array([5,2,4,5,3,8,2,5,3,5,6,8])
# A work around to get the histograms overplotted with each other to overlap correctly;
histrangelist = [(numpy.nanmin(A),numpy.nanmax(A)),(numpy.nanmin(B),numpy.nanmax(B)),
(numpy.nanmin(C),numpy.nanmax(C)),(numpy.nanmin(D),numpy.nanmax(D))]
data = numpy.array([A,B,C,D])
labels = ['A','3','C','D']
fig = GridPlot(data,labels=labels, no_tick_labels=True, color='black',
hist=True, histbins=3, histloc='tl', histrangelist=histrangelist, fig=None)
# Data of note to plot in different color
A2 = numpy.array([1,2,3,4])
B2 = numpy.array([8,7,3,6])
C2 = numpy.array([6,3,4,7])
D2 = numpy.array([5,2,4,5])
data2 = numpy.array([A2,B2,C2,D2])
fig = GridPlot(data2,labels=labels, no_tick_labels=True, color='red',
hist=True, histbins=3, histloc='tr', histrangelist=histrangelist, fig=fig)
return fig
示例11: plot_result
def plot_result(self, result):
"""
It plots the resulting Q and q when atype is set to 'tsl' or 'asl'
:param result:
Event Sync result from compute()
:type result: dict
:returns: plt.figure
-- figure plot
"""
' Raise error if parameters are not in the correct type '
if not(isinstance(result, dict)) : raise TypeError("Requires result to be a dictionary")
' Raise error if not the good dictionary '
if not 'Q' in result : raise ValueError("Requires dictionary to be the output of compute() method")
if not 'q' in result : raise ValueError("Requires dictionary to be the output of compute() method")
x=np.arange(0, result['Q'].size, 1)
figure, axarr = plt.subplots(2, sharex=True)
axarr[0].set_title('Synchrony and time delay pattern')
axarr[0].set_xlabel('Samples')
axarr[1].set_xlabel('Samples')
axarr[0].set_ylim(0,np.nanmax(result['Q']))
axarr[0].plot(x, result['Q'], label="Synchrony (Qn)")
axarr[1].set_ylim(np.nanmin(result['q']),np.nanmax(result['q']))
axarr[1].plot(x, result['q'], label="Time delay pattern (qn)")
axarr[0].legend(loc='best')
axarr[1].legend(loc='best')
return figure
示例12: plot_all_time_series
def plot_all_time_series(config_list, output_dir):
"""Plot column charts of the raw total time/energy spent in each profiler category.
Keyword arguments:
config_list -- [(config, result of process_config_dir(...))]
output_dir -- where to write plots to
"""
time_series_out_dir = path.join(output_dir, 'time_series')
os.makedirs(time_series_out_dir)
max_end_times = []
max_power_values = []
for (c, cd) in config_list:
for (t, td) in cd:
trial_max_end_times = map(np.nanmax, filter(lambda x: len(x) > 0, [te for (p, ts, te, es, ee) in td]))
max_end_times.append(np.nanmax(trial_max_end_times))
for (p, ts, te, es, ee) in td:
# We only care about the energy profiler (others aren't reliable for instant power anyway)
if p == ENERGY_PROFILER_NAME and len(te) > 0:
max_power_values.append(np.nanmax(hb_energy_times_to_power(es, ee, ts, te)))
max_time = np.nanmax(max_end_times)
max_power = np.nanmax(np.array(max_power_values)) * 1.2 # leave a little space at the top
for (config, config_data) in config_list:
[plot_trial_time_series(config, trial, trial_data, max_time, max_power, time_series_out_dir)
for (trial, trial_data) in config_data]
示例13: plot_nontarget_betas_n_back
def plot_nontarget_betas_n_back(t_vols_n_back_beta_1, b_vols_smooth_n_back, in_brain_mask, brain_structure, nice_cmap, n_back):
beta_index = 1
b_vols_smooth_n_back[~in_brain_mask] = np.nan
t_vols_n_back_beta_1[~in_brain_mask] = np.nan
min_val = np.nanmin(b_vols_smooth_n_back[...,(40,50,60),beta_index])
max_val = np.nanmax(b_vols_smooth_n_back[...,(40,50,60),beta_index])
plt.figure()
for map_index, depth in (((3,2,1), 40),((3,2,3), 50),((3,2,5), 60)):
plt.subplot(*map_index)
plt.title("z=%d,%s" % (depth, n_back + "-back nontarget,beta values"))
plt.imshow(brain_structure[...,depth], alpha=0.5)
plt.imshow(b_vols_smooth_n_back[...,depth,beta_index], cmap=nice_cmap, alpha=0.5, vmin=min_val, vmax=max_val)
plt.colorbar()
plt.tight_layout()
t_min_val = np.nanmin(t_vols_n_back_beta_1[...,(40,50,60)])
t_max_val = np.nanmax(t_vols_n_back_beta_1[...,(40,50,60)])
for map_index, depth in (((3,2,2), 40),((3,2,4), 50),((3,2,6), 60)):
plt.subplot(*map_index)
plt.title("z=%d,%s" % (depth, n_back + "-back nontarget,t values"))
plt.imshow(brain_structure[...,depth], alpha=0.5)
plt.imshow(t_vols_n_back_beta_1[...,depth], cmap=nice_cmap, alpha=0.5, vmin=t_min_val, vmax=t_max_val)
plt.colorbar()
plt.tight_layout()
plt.savefig(os.path.join(output_filename, "sub011_nontarget_betas_%s_back.png" % (n_back)), format='png', dpi=500)
示例14: plot_noise_regressor_betas
def plot_noise_regressor_betas(b_vols_smooth, t_vols_beta_6_to_9, brain_structure, in_brain_mask, nice_cmap):
plt.figure()
min_val = np.nanmin(b_vols_smooth[...,40,(6,7,9)])
max_val = np.nanmax(b_vols_smooth[...,40,(6,7,9)])
plt.subplot(3,2,1)
plt.title("z=%d,%s" % (40, "linear drift,betas"))
b_vols_smooth[~in_brain_mask] = np.nan
plt.imshow(brain_structure[...,40], alpha=0.5)
plt.imshow(b_vols_smooth[...,40,6], cmap=nice_cmap, alpha=0.5, vmin=min_val, vmax=max_val)
plt.colorbar()
plt.tight_layout()
plt.subplot(3,2,3)
plt.title("z=%d,%s" % (40, "quadratic drift,betas"))
b_vols_smooth[~in_brain_mask] = np.nan
plt.imshow(brain_structure[...,40], alpha=0.5)
plt.imshow(b_vols_smooth[...,40,7], cmap=nice_cmap, alpha=0.5, vmin=min_val, vmax=max_val)
plt.colorbar()
plt.tight_layout()
plt.subplot(3,2,5)
plt.title("z=%d,%s" % (40, "second PC,betas"))
b_vols_smooth[~in_brain_mask] = np.nan
plt.imshow(brain_structure[...,40], alpha=0.5)
plt.imshow(b_vols_smooth[...,40,9], cmap=nice_cmap, alpha=0.5, vmin=min_val, vmax=max_val)
plt.colorbar()
plt.tight_layout()
t_vols_beta_6_to_9[0][~in_brain_mask] = np.nan
t_vols_beta_6_to_9[1][~in_brain_mask] = np.nan
t_vols_beta_6_to_9[3][~in_brain_mask] = np.nan
t_min_val = np.nanmin([t_vols_beta_6_to_9[0][...,40], t_vols_beta_6_to_9[1][...,40], t_vols_beta_6_to_9[3][...,40]])
t_max_val = np.nanmax([t_vols_beta_6_to_9[0][...,40], t_vols_beta_6_to_9[1][...,40], t_vols_beta_6_to_9[3][...,40]])
plt.subplot(3,2,2)
plt.title("z=%d,%s" % (40, "linear drift,t values"))
plt.imshow(brain_structure[...,40], alpha=0.5)
plt.imshow(t_vols_beta_6_to_9[0][...,40], cmap=nice_cmap, alpha=0.5, vmin=t_min_val, vmax=t_max_val)
plt.colorbar()
plt.tight_layout()
plt.subplot(3,2,4)
plt.title("z=%d,%s" % (40, "quadratic drift,t values"))
plt.imshow(brain_structure[...,40], alpha=0.5)
plt.imshow(t_vols_beta_6_to_9[1][...,40], cmap=nice_cmap, alpha=0.5, vmin=t_min_val, vmax=t_max_val)
plt.colorbar()
plt.tight_layout()
plt.subplot(3,2,6)
plt.title("z=%d,%s" % (40, "second PC,t values"))
plt.imshow(brain_structure[...,40], alpha=0.5)
plt.imshow(t_vols_beta_6_to_9[3][...,40], cmap=nice_cmap, alpha=0.5, vmin=t_min_val, vmax=t_max_val)
plt.colorbar()
plt.tight_layout()
plt.savefig(os.path.join(output_filename, "sub001_noise_regressors_betas_map.png"), format='png', dpi=500)
示例15: acquire_data
def acquire_data(self, var_name=None, slice_=()):
if var_name in self._variables:
vars = [var_name]
else:
vars = self._variables
if not isinstance(slice_, tuple): slice_ = (slice_,)
for vn in vars:
var = self._data_array[vn]
ndims = len(var.shape)
# Ensure the slice_ is the appropriate length
if len(slice_) < ndims:
slice_ += (slice(None),) * (ndims-len(slice_))
arri = ArrayIterator(var, self._block_size)[slice_]
for d in arri:
if d.dtype.char is "S":
# Obviously, we can't get the range of values for a string data type!
rng = None
elif isinstance(d, numpy.ma.masked_array):
# TODO: This is a temporary fix because numpy 'nanmin' and 'nanmax'
# are currently broken for masked_arrays:
# http://mail.scipy.org/pipermail/numpy-discussion/2011-July/057806.html
dc = d.compressed()
if dc.size == 0:
rng = None
else:
rng = (numpy.nanmin(dc), numpy.nanmax(dc))
else:
rng = (numpy.nanmin(d), numpy.nanmax(d))
yield vn, arri.curr_slice, rng, d
return