当前位置: 首页>>代码示例>>Python>>正文


Python numpy.matrix函数代码示例

本文整理汇总了Python中numpy.matrix函数的典型用法代码示例。如果您正苦于以下问题:Python matrix函数的具体用法?Python matrix怎么用?Python matrix使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了matrix函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_square_matrices_1

    def test_square_matrices_1(self):
        op4 = OP4()
        # matrices = op4.read_op4(os.path.join(op4Path, fname))
        form1 = 1
        form2 = 2
        form3 = 2
        from numpy import matrix, ones, reshape, arange

        A1 = matrix(ones((3, 3), dtype="float64"))
        A2 = reshape(arange(9, dtype="float64"), (3, 3))
        A3 = matrix(ones((1, 1), dtype="float32"))
        matrices = {"A1": (form1, A1), "A2": (form2, A2), "A3": (form3, A3)}

        for (is_binary, fname) in [(False, "small_ascii.op4"), (True, "small_binary.op4")]:
            op4_filename = os.path.join(op4Path, fname)
            op4.write_op4(op4_filename, matrices, name_order=None, precision="default", is_binary=False)
            matrices2 = op4.read_op4(op4_filename, precision="default")
            (form1b, A1b) = matrices2["A1"]
            (form2b, A2b) = matrices2["A2"]
            self.assertEqual(form1, form1b)
            self.assertEqual(form2, form2b)

            (form1b, A1b) = matrices2["A1"]
            (form2b, A2b) = matrices2["A2"]
            (form3b, A3b) = matrices2["A3"]
            self.assertEqual(form1, form1b)
            self.assertEqual(form2, form2b)
            self.assertEqual(form3, form3b)

            self.assertTrue(array_equal(A1, A1b))
            self.assertTrue(array_equal(A2, A2b))
            self.assertTrue(array_equal(A3, A3b))
            del A1b, A2b, A3b
            del form1b, form2b, form3b
开发者ID:ClaesFredo,项目名称:pyNastran,代码行数:34,代码来源:op4_test.py

示例2: test_ohess

def test_ohess():
    """Simple test of ohess matrix."""
    n = 10
    a = rogues.ohess(n)
    # Test to see if a is orthogonal...
    b = np.matrix(a) * np.matrix(a.T)
    assert(np.allclose(b, np.eye(n)))
开发者ID:fabianp,项目名称:rogues,代码行数:7,代码来源:test_rogues.py

示例3: __init__

    def __init__(self, x_m, y_m, heading_d=None):
        if heading_d is None:
            heading_d = 0.0
        self._estimates = numpy.matrix(
            # x m, y m, heading d, speed m/s
            [x_m, y_m, heading_d, 0.0]
        ).transpose()  # x

        # This will be populated as the filter runs
        # TODO: Ideally, this should be initialized to those values, for right
        # now, identity matrix is fine
        self._covariance_matrix = numpy.matrix([  # P
            [1, 0, 0, 0],
            [0, 1, 0, 0],
            [0, 0, 1, 0],
            [0, 0, 0, 1],
        ])
        # TODO: Tune this parameter for maximum performance
        self._process_noise = numpy.matrix([  # Q
            [1, 0, 0, 0],
            [0, 1, 0, 0],
            [0, 0, 1, 0],
            [0, 0, 0, 1],
        ])

        self._last_observation_s = time.time()
        self._estimated_turn_rate_d_s = 0.0
开发者ID:bskari,项目名称:sparkfun-avc,代码行数:27,代码来源:location_filter.py

示例4: test_arclength_half_circle

def test_arclength_half_circle():
    """ Here we define the tests for the lenght computer of our ArcLengthParametrizer, we try it with a half a 
    circle and a fan. 
    We test it both in 2d and 3d."""


    # Number of interpolation points minus one
    n = 5
    toll = 1.e-6
    points = np.linspace(0, 1, (n+1) ) 
    R = 1
    P = 1
    control_points_2d = np.asmatrix(np.zeros([n+1,2]))#[np.array([R*np.cos(5*i * np.pi / (n + 1)), R*np.sin(5*i * np.pi / (n + 1)), P * i]) for i in range(0, n+1)]
    control_points_2d[:,0] = np.transpose(np.matrix([R*np.cos(1 * i * np.pi / (n + 1))for i in range(n+1)]))
    control_points_2d[:,1] = np.transpose(np.matrix([R*np.sin(1 * i * np.pi / (n + 1))for i in range(n+1)]))

    control_points_3d = np.asmatrix(np.zeros([n+1,3]))#[np.array([R*np.cos(5*i * np.pi / (n + 1)), R*np.sin(5*i * np.pi / (n + 1)), P * i]) for i in range(0, n+1)]
    control_points_3d[:,0] = np.transpose(np.matrix([R*np.cos(1 * i * np.pi / (n + 1))for i in range(n+1)]))
    control_points_3d[:,1] = np.transpose(np.matrix([R*np.sin(1 * i * np.pi / (n + 1))for i in range(n+1)]))
    control_points_3d[:,2] = np.transpose(np.matrix([P*i for i in range(n+1)]))

    vsl = AffineVectorSpace(UniformLagrangeVectorSpace(n+1),0,1)
    dummy_arky_2d = ArcLengthParametrizer(vsl, control_points_2d)
    dummy_arky_3d = ArcLengthParametrizer(vsl, control_points_3d)
    length2d = dummy_arky_2d.compute_arclength()[-1,1]
    length3d = dummy_arky_3d.compute_arclength()[-1,1]
#    print (length2d)
#    print (n * np.sqrt(2))
    l2 = np.pi * R
    l3 = 2 * np.pi * np.sqrt(R * R + (P / (2 * np.pi)) * (P / (2 * np.pi)))
    print (length2d, l2)
    print (length3d, l3)
    assert (length2d - l2) < toll
    assert (length3d - l3) < toll
开发者ID:luca-heltai,项目名称:ePICURE,代码行数:34,代码来源:test_arclength.py

示例5: svdUpdate

def svdUpdate(U, S, V, a, b):
    """
    Update SVD of an (m x n) matrix `X = U * S * V^T` so that
    `[X + a * b^T] = U' * S' * V'^T`
    and return `U'`, `S'`, `V'`.
    
    `a` and `b` are (m, 1) and (n, 1) rank-1 matrices, so that svdUpdate can simulate 
    incremental addition of one new document and/or term to an already existing 
    decomposition.
    """
    rank = U.shape[1]
    m = U.T * a
    p = a - U * m
    Ra = numpy.sqrt(p.T * p)
    assert float(Ra) > 1e-10
    P = (1.0 / float(Ra)) * p
    n = V.T * b
    q = b - V * n
    Rb = numpy.sqrt(q.T * q)
    assert float(Rb) > 1e-10
    Q = (1.0 / float(Rb)) * q

    K = numpy.matrix(numpy.diag(list(numpy.diag(S)) + [0.0])) + numpy.bmat("m ; Ra") * numpy.bmat(" n; Rb").T
    u, s, vt = numpy.linalg.svd(K, full_matrices=False)
    tUp = numpy.matrix(u[:, :rank])
    tVp = numpy.matrix(vt.T[:, :rank])
    tSp = numpy.matrix(numpy.diag(s[:rank]))
    Up = numpy.bmat("U P") * tUp
    Vp = numpy.bmat("V Q") * tVp
    Sp = tSp
    return Up, Sp, Vp
开发者ID:beibeiyang,项目名称:Latent-Dirichlet-Allocation,代码行数:31,代码来源:lsimodel.py

示例6: __init__

 def __init__(self):
     self._position = numpy.zeros((2,))
     self._position_frozen = False
     self._matrix = numpy.matrix(numpy.identity(3, numpy.float64))
     self._temp_matrix = numpy.matrix(numpy.identity(3, numpy.float64))
     self._selected = False
     self._scene = None
开发者ID:MiniRalis,项目名称:Cura2,代码行数:7,代码来源:displayableObject.py

示例7: __init__

    def __init__(self, mol, mints):
        """
        Initialize the rhf
        :param mol: a psi4 molecule object
        :param mints: a molecular integrals object (from MintsHelper)
        """
        self.mol = mol
        self.mints = mints

        self.V_nuc = mol.nuclear_repulsion_energy()
        self.T = np.matrix(mints.ao_kinetic())
        self.S = np.matrix(mints.ao_overlap())
        self.V = np.matrix(mints.ao_potential())

        self.g = np.array(mints.ao_eri())

        # Determine the number of electrons and the number of doubly occupied orbitals
        self.nelec = -mol.molecular_charge()
        for A in range(mol.natom()):
            self.nelec += int(mol.Z(A))
        if mol.multiplicity() != 1 or self.nelec % 2:
            raise Exception("This code only allows closed-shell molecules")
        self.ndocc = self.nelec / 2

        self.maxiter = psi4.get_global_option('MAXITER')
        self.e_convergence = psi4.get_global_option('E_CONVERGENCE')

        self.nbf = mints.basisset().nbf()
开发者ID:yu-shang,项目名称:summer-program,代码行数:28,代码来源:rhf.py

示例8: manova1_single_node

def manova1_single_node(Y, GROUP):
	### assemble counts:
	u           = np.unique(GROUP)
	nGroups     = u.size
	nResponses  = Y.shape[0]
	nComponents = Y.shape[1]
	### create design matrix:
	X           = np.zeros((nResponses, nGroups))
	ind0        = 0
	for i,uu in enumerate(u):
		n       = (GROUP==uu).sum()
		X[ind0:ind0+n, i] = 1
		ind0   += n
	### SS for original design:
	Y,X   = np.matrix(Y), np.matrix(X)
	b     = np.linalg.pinv(X)*Y
	R     = Y - X*b
	R     = R.T*R
	### SS for reduced design:
	X0    = np.matrix(  np.ones(Y.shape[0])  ).T
	b0    = np.linalg.pinv(X0)*Y
	R0    = Y - X0*b0
	R0    = R0.T*R0
	### Wilk's lambda:
	lam   = np.linalg.det(R) / (np.linalg.det(R0) + eps)
	### test statistic:
	N,p,k = float(nResponses), float(nComponents), float(nGroups)
	x2    = -((N-1) - 0.5*(p+k)) * log(lam)
	df    = p*(k-1)
	# return lam, x2, df
	return x2
开发者ID:jorjuato,项目名称:spm1d,代码行数:31,代码来源:manova.py

示例9: get_system_model

def get_system_model():

    A = np.matrix([[DT, 1.0],
                   [0.0, DT]])
    B = np.matrix([0.0, 1.0]).T

    return A, B
开发者ID:BailiShanghai,项目名称:PythonRobotics,代码行数:7,代码来源:LQRplanner.py

示例10: findClosestPointInB

def findClosestPointInB(b_data, a, offset):

	xd = offset[0]
	yd = offset[1]
	theta = offset[2]

	T = numpy.matrix([	[math.cos(theta), -math.sin(theta), xd],
			[math.sin(theta), math.cos(theta), yd],
			[0.0, 0.0, 1.0]
		    ])


	a_hom = numpy.matrix([[a[0]],[a[1]],[1.0]])
	temp = T*a_hom
	a_off = [temp[0,0],temp[1,0]]

	minDist = 1e100
	minPoint = None

	for p in b_data:

	 	dist = math.sqrt((p[0]-a_off[0])**2 + (p[1]-a_off[1])**2)
		if dist < minDist:
			minPoint = copy(p)
			minDist = dist


	if minPoint != None:
		return minPoint, minDist
	else:
		raise
开发者ID:zhewang,项目名称:lcvis,代码行数:31,代码来源:gen_icp.py

示例11: load_matlab_matrix

def load_matlab_matrix( matfile, matname=None ):
    """
    Wraps scipy.io.loadmat.

    If matname provided, returns np.ndarray representing the index
    map. Otherwise, the full dict provided by loadmat is returns.
    """
    if not matname:
        out = spio.loadmat( matfile )
        mat = _extract_mat( out )
        # if mat is a sparse matrix, convert it to numpy matrix
        try:
            mat = np.matrix( mat.toarray() )
        except AttributeError:
            mat = np.matrix( mat )
        return mat
    else:
        matdict = spio.loadmat( matfile )
        mat = matdict[ matname ]
        # if mat is a sparse matrix, convert it to numpy matrix
        try:
            mat = np.matrix( mat.toarray() )
        except AttributeError:
            mat = np.matrix( mat )
        return mat #np.matrix( mat[ matname ] )
开发者ID:caosuomo,项目名称:rads,代码行数:25,代码来源:utils.py

示例12: _update

 def _update(self):
     """
     Calculate those terms for prediction that do not depend on predictive
     inputs.
     """
     from numpy.linalg import cholesky, solve, LinAlgError
     from numpy import transpose, eye, matrix
     import types
     self._K = self.calc_covariance(self.X)
     if not self._K.shape[0]:  # we didn't have any data
         self._L = matrix(zeros((0, 0), numpy.float64))
         self._alpha = matrix(zeros((0, 1), numpy.float64))
         self.LL = 0.
     else:
         try:
             self._L = matrix(cholesky(self._K))
         except LinAlgError as detail:
             raise RuntimeError("""Cholesky decomposition of covariance """
                                """matrix failed. Your kernel may not be positive """
                                """definite. Scipy complained: %s""" % detail)
         self._alpha = solve(self._L.T, solve(self._L, self.y))
         self.LL = (
             - self.n * math.log(2.0 * math.pi)
             - (self.y.T * self._alpha)[0, 0]
         ) / 2.0
     # print self.LL
     # import IPython; IPython.Debugger.Pdb().set_trace()
     self.LL -= log(diagonal(self._L)).sum()
开发者ID:JohnReid,项目名称:infpy,代码行数:28,代码来源:gaussian_process.py

示例13: predict

    def predict(self, x_star):
        """
        Predict the process's values on the input values

        @arg x_star: Prediction points

        @return: ( mean, variance, LL )
        where mean are the predicted means, variance are the predicted
        variances and LL is the log likelihood of the data for the given
        value of the parameters (i.e. not integrating over hyperparameters)
        """
        from numpy.linalg import solve
        import types
        # print 'Predicting'
        if 0 == len(self.X):
            f_star_mean = matrix(zeros((len(x_star), 1), numpy.float64))
            v = matrix(zeros((0, len(x_star)), numpy.float64))
        else:
            k_star = self.calc_covariance(self.X, x_star)
            f_star_mean = k_star.T * self._alpha
            if 0 == len(x_star):  # no training data
                v = matrix(zeros((0, len(x_star)), numpy.float64))
            else:
                v = solve(self._L, k_star)
        V_f_star = self.calc_covariance(x_star) - v.T * v
        # print 'Done predicting'
        # import IPython; IPython.Debugger.Pdb().set_trace()
        return (f_star_mean, V_f_star, self.LL)
开发者ID:JohnReid,项目名称:infpy,代码行数:28,代码来源:gaussian_process.py

示例14: main

def main():

    sample='q'
    sm_bin='10.0_10.5'
    catalogue = 'sm_9.5_s0.2_sfr_c-0.75_250'

    #load in fiducial mock
    filepath = './'
    filename = 'sm_9.5_s0.2_sfr_c-0.8_Chinchilla_250_wp_fiducial_'+sample+'_'+sm_bin+'_cov.npy'
    cov = np.matrix(np.load(filepath+filename))
    diag = np.diagonal(cov)
    filepath = cu.get_output_path() + 'analysis/central_quenching/observables/'
    filename = 'sm_9.5_s0.2_sfr_c-0.8_Chinchilla_250_wp_fiducial_'+sample+'_'+sm_bin+'.dat'
    data = ascii.read(filepath+filename)
    rbins = np.array(data['r'])
    mu = np.array(data['wp'])
    
    #load in comparison mock
    
    
    
    
    plt.figure()
    plt.errorbar(rbins, mu, yerr=np.sqrt(np.diagonal(cov)), color='black')
    plt.plot(rbins, wp,  color='red')
    plt.xscale('log')
    plt.yscale('log')
    plt.show()
    
    inv_cov = cov.I
    Y = np.matrix((wp-mu))
    
    X = Y*inv_cov*Y.T
    
    print(X)
开发者ID:duncandc,项目名称:mpeak_vpeak_mock,代码行数:35,代码来源:chi_squared_corr_create_mock.py

示例15: test_pascal_1

def test_pascal_1():
    """Simple test of pascal matrix: k = 1."""
    # Notice we recover the unit matrix with n = 18, better than previous test
    n = 18
    a = rogues.pascal(n, 1)
    b = np.matrix(a) * np.matrix(a)
    assert(np.allclose(b, np.eye(n)))
开发者ID:fabianp,项目名称:rogues,代码行数:7,代码来源:test_rogues.py


注:本文中的numpy.matrix函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。