当前位置: 首页>>代码示例>>Python>>正文


Python numpy.matmul函数代码示例

本文整理汇总了Python中numpy.matmul函数的典型用法代码示例。如果您正苦于以下问题:Python matmul函数的具体用法?Python matmul怎么用?Python matmul使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了matmul函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: projectBackBFM_withExpr

def projectBackBFM_withExpr(model, features, expr_paras):
	alpha = model.shapeEV * 0
	for it in range(0, 99):
		alpha[it] = model.shapeEV[it] * features[it]
	S = np.matmul(model.shapePC, alpha)

	expr = model.expEV * 0
	for it in range(0, 29):
		expr[it] = model.expEV[it] * expr_paras[it]
	E = np.matmul(model.expPC, expr)

	## Adding back average shape
	S = model.shapeMU + S + model.expMU + E
	numVert = S.shape[0]/3

	# (Texture)
	beta = model.texEV * 0
	for it in range(0, 99):
		beta[it] = model.texEV[it] * features[it+99]
	T = np.matmul(model.texPC, beta)
	## Adding back average texture
	T = model.texMU + T
	## Some filtering
	T = [truncateUint8(value) for value in T]
	## Final Saving for visualization
	S = np.reshape(S,(numVert,3))
	T = np.reshape(T,(numVert, 3))
	return S,T
开发者ID:linanseu,项目名称:Expression-Net,代码行数:28,代码来源:utils.py

示例2: computeJonesRes

 def computeJonesRes(self):
     """Compute the Jones that results from applying the E-Jones to the
     right.
     The structure of the jonesrbasis is [timeIdx, sphIdx, skycompIdx].
     """
     idxshape = self.jonesrbasis.shape[0:-2]
     jonesrbasis = np.reshape(self.jonesrbasis, (-1, 3, 3))
     jonesrbasis_to = np.matmul(np.asarray(self.stnRot.T), jonesrbasis)
     (az_from, el_from) = crt2sph(jonesrbasis[..., 0].squeeze().T)
     theta_phi_view = (np.pi/2-el_from.flatten(), az_from.flatten())
     ejones = self.dualPolElem.getJonesAlong(self.freqChan, theta_phi_view)
     #(theta_lcl, phi_lcl) = self.dualPolElem.getBuildCoordinates(math.pi/2-r_sph[1], r_sph[0])
     #print theta_lcl, phi_lcl
     r_lcl = crt2sph(jonesrbasis_to[..., 0].squeeze().T)
     #print np.rad2deg(r_lcl)
     jonesbasisMat = getSph2CartTransfMat(jonesrbasis_to[..., 0].squeeze())
     #paraRot = np.matmul(np.conjugate(jonesbasisMat), jonesrbasis_to)
     self.jonesbasis = np.reshape(jonesbasisMat,
                                  idxshape+jonesbasisMat.shape[1:])
     # This is the actual MEq multiplication:
     if ejones.ndim > 3:
         frqdimsz = (ejones.shape[0],)
     else:
         frqdimsz = ()
     self.jones = np.reshape(
                     np.matmul(ejones, np.reshape(self.jonesr, (-1, 2, 2))),
                     frqdimsz+idxshape+(2, 2)
                     )
     self.thisjones = np.reshape(ejones, frqdimsz+idxshape+(2, 2))
开发者ID:2baOrNot2ba,项目名称:dreamBeam,代码行数:29,代码来源:jones.py

示例3: predict_new

    def predict_new(self, X, z):

        first_layer_output = np.zeros(self.units)
        
        for unit in range(self.units):
            first_layer_output[unit] = self.activation(np.matmul(np.transpose(X), z[unit*(self.ar+len(self.X_names)+1):((unit+1)*(self.ar+len(self.X_names)+1))]))

        params_used = ((self.units)*(self.ar+len(self.X_names)+1))

        # Hidden layers
        hidden_layer_output = np.zeros((self.units, self.layers-1))
        for layer in range(1, self.layers):
            for unit in range(self.units):
                if layer == 1:
                    hidden_layer_output[unit,layer-1] = self.activation(np.matmul(first_layer_output,
                        z[params_used+unit*(self.units)+((layer-1)*self.units**2):((params_used+(unit+1)*self.units)+((layer-1)*self.units**2))]))
                else:
                    hidden_layer_output[unit,layer-1] = self.activation(np.matmul(hidden_layer_output[:,layer-1],
                        z[params_used+unit*(self.units)+((layer-1)*self.units**2):((params_used+(unit+1)*self.units)+((layer-1)*self.units**2))]))

        params_used = params_used + (self.layers-1)*self.units**2

        # Output layer
        if self.layers == 1:
            mu = np.matmul(first_layer_output, z[params_used:params_used+self.units])
        else:
            mu = np.matmul(hidden_layer_output[:,-1], z[params_used:params_used+self.units])

        return mu
开发者ID:RJT1990,项目名称:pyflux,代码行数:29,代码来源:nnarx.py

示例4: _testSvdCorrectness

  def _testSvdCorrectness(self, dtype, shape):
    np.random.seed(1)
    x_np = np.random.uniform(low=-1.0, high=1.0, size=shape).astype(dtype)
    m, n = shape[-2], shape[-1]
    _, s_np, _ = np.linalg.svd(x_np)
    with self.cached_session() as sess:
      x_tf = array_ops.placeholder(dtype)
      with self.test_scope():
        s, u, v = linalg_ops.svd(x_tf, full_matrices=True)
      s_val, u_val, v_val = sess.run([s, u, v], feed_dict={x_tf: x_np})
      u_diff = np.matmul(u_val, np.swapaxes(u_val, -1, -2)) - np.eye(m)
      v_diff = np.matmul(v_val, np.swapaxes(v_val, -1, -2)) - np.eye(n)
      # Check u_val and v_val are orthogonal matrices.
      self.assertLess(np.linalg.norm(u_diff), 1e-2)
      self.assertLess(np.linalg.norm(v_diff), 1e-2)
      # Check that the singular values are correct, i.e., close to the ones from
      # numpy.lingal.svd.
      self.assertLess(np.linalg.norm(s_val - s_np), 1e-2)
      # The tolerance is set based on our tests on numpy's svd. As our tests
      # have batch dimensions and all our operations are on float32, we set the
      # tolerance a bit larger. Numpy's svd calls LAPACK's svd, which operates
      # on double precision.
      self.assertLess(
          np.linalg.norm(self._compute_usvt(s_val, u_val, v_val) - x_np), 2e-2)

      # Check behavior with compute_uv=False.  We expect to still see 3 outputs,
      # with a sentinel scalar 0 in the last two outputs.
      with self.test_scope():
        no_uv_s, no_uv_u, no_uv_v = gen_linalg_ops.svd(
            x_tf, full_matrices=True, compute_uv=False)
      no_uv_s_val, no_uv_u_val, no_uv_v_val = sess.run(
          [no_uv_s, no_uv_u, no_uv_v], feed_dict={x_tf: x_np})
      self.assertAllClose(no_uv_s_val, s_val, atol=1e-4, rtol=1e-4)
      self.assertEqual(no_uv_u_val, 0.0)
      self.assertEqual(no_uv_v_val, 0.0)
开发者ID:Albert-Z-Guo,项目名称:tensorflow,代码行数:35,代码来源:svd_op_test.py

示例5: forwardPropogation

def forwardPropogation(W,B,inputDataVector):

	A = []
	H = []

	A.append(np.add(B[0],np.matmul(W[0],inputDataVector)))
	
	if(activation=="sigmoid"):
		H.append(sigmoidFunctionToVector(A[0]))
	else:
		H.append(tanhFunctionToVector(A[0]))

	for k in range(1,num_hidden):
		A.append(np.add(B[k],np.matmul(W[k],H[k-1])))
		
		if(activation=="sigmoid"):
			H.append(sigmoidFunctionToVector(A[k]))
		else:
			H.append(tanhFunctionToVector(A[k]))

	A.append(np.add(B[-1],np.matmul(W[-1],H[-1])))
	
	y_hat = softmax(A[-1])

	return A,H,y_hat
开发者ID:ved5288,项目名称:DeepLearningPA1,代码行数:25,代码来源:train.py

示例6: BackpropXOR

def BackpropXOR(W1, W2, X, D):
    alpha = 0.9
    
    N = 4
    for k in range(N):
        x = X[k, :].T
        d = D[k]
        
        v1 = np.matmul(W1, x)
        y1 = Sigmoid(v1)
        v  = np.matmul(W2, y1)
        y  = Sigmoid(v)
        
        e     = d - y
        delta = y*(1-y) * e
        
        e1     = np.matmul(W2.T, delta)
        delta1 = y1*(1-y1) * e1
        
        dW1 = (alpha*delta1).reshape(4, 1) * x.reshape(1, 3)
        W1  = W1 + dW1
        
        dW2 = alpha * delta * y1
        W2  = W2 + dW2
    
    return W1, W2
开发者ID:moyixinqing,项目名称:matlab-deep-learning,代码行数:26,代码来源:BackpropXOR.py

示例7: BackPropMmt

def BackPropMmt(W1, W2, X, D):
    alpha = 0.9
    beta  = 0.9
    
    mmt1 = np.zeros_like(W1)
    mmt2 = np.zeros_like(W2)
    
    N = 4
    for k in range(N):
        x = X[k, :].T
        d = D[k]
        
        v1 = np.matmul(W1, x)
        y1 = Sigmoid(v1)
        v  = np.matmul(W2, y1)
        y  = Sigmoid(v)
        
        e     = d - y
        delta = y*(1-y) * e
        
        e1     = np.matmul(W2.T, delta)
        delta1 = y1*(1-y1) * e1
        
        dW1  = (alpha*delta1).reshape(4, 1) * x.reshape(1, 3)
        mmt1 = dW1 + beta*mmt1
        W1   = W1 + mmt1
        
        dW2  = alpha * delta * y1
        mmt2 = dW2 + beta*mmt2
        W2   = W2 + mmt2
    
    return W1, W2
开发者ID:moyixinqing,项目名称:matlab-deep-learning,代码行数:32,代码来源:BackpropMnt.py

示例8: geometric_distort

def geometric_distort (image0):

  assert image0.shape[0] == image0.shape[1], 'need a square on input'
  assert is_bgra(image0), image0.shape

  # warp
  shear1 = exp((np.random.rand()-0.5) * COEF_SHEAR)
  rot    = np.random.randn() * COEF_ROT
  shear2 = exp((np.random.rand()-0.5) * COEF_SHEAR)
  Shear1 = np.asarray([[shear1, 0], [0, 1.0/shear1]])
  Rot    = np.asarray([[cos(rot), sin(rot)], [-sin(rot), cos(rot)]])
  Shear2 = np.asarray([[shear2, 0], [0, 1.0/shear2]])    
  #print shear1, rot, shear2
  M = np.matmul(np.matmul(Shear2, Rot), Shear1)
  image = warp_patch (image0, M, 2)

  # crop to roi
  nnz = np.nonzero(image[:,:,3])
  # roi = [y1 x1 y2 x2)
  roi = (min(nnz[0].tolist()), min(nnz[1].tolist()),
         max(nnz[0].tolist()), max(nnz[1].tolist()))
  #print roi
  image = image[roi[0]:roi[2],roi[1]:roi[3],:]

  return image
开发者ID:kukuruza,项目名称:synthetic,代码行数:25,代码来源:synthesize.py

示例9: rotate_smooth

        def rotate_smooth(self, current_up, current_angvel, target_rot, speed = 0.01):
	    for i in range(len(target_rot)):
	        if target_rot[i] > 360:
		    target_rot[i] -= 360
                if target_rot[i] < 0:
		    target_rot[i] += 360
	#    direction = (np.array(target_rot) - np.array(current_rot))
	#    print str(target_rot)
	#    print str(current_rot)
        #   direction = speed * direction

	    target_rot = np.array(target_rot)
	    target_rot = np.deg2rad(target_rot)
	    # x axis rotation
	    th = target_rot[0]
	    rx = np.array([[1, 0, 0], [0, np.cos(th), np.sin(th)], [0, -np.sin(th), np.cos(th)]])
	    # y axis rotation
	    th = target_rot[1]
	    ry = np.array([[np.cos(th), 0, -np.sin(th)], [0, 1, 0], [np.sin(th), 0, np.cos(th)]])
	    # z axis rotation
	    th = target_rot[2]
	    rz = np.array([[np.cos(th), np.sin(th), 0], [-np.sin(th), np.cos(th), 0], [0, 0, 1]])

	    target_axis = np.matmul(np.matmul(np.matmul(rx,ry), rz), current_up)
 
	    # z rotation only does not work with [0, 0, 1] have to rotate around other axis
            #if(target_axis == np.array([0, 0, 1])).all():
            #    current_up = [0, 1, 0]
	    #	target_axis = np.matmul(np.matmul(np.matmul(rx,ry), rz), current_up)
            return target_axis #self.stabilize(current_up, current_angvel, target_axis)
开发者ID:dicarlolab,项目名称:ThreeDWorld,代码行数:30,代码来源:curious.py

示例10: locallogisticHessian

    def locallogisticHessian(self, theta, weights, reg_param):
        """
        Hessian for regulatrized local logistic regression L2 loss

        Args:
            theta (np.array): Current lwlr parameters of shape
                [1, n_features]
            weights (np.array): training set weights of shape
                [n_samples, 1]
            reg_param (float): L2 regularization weight. If 0, no
                no regulatrization is used.

        Returns:
            Hessian (np.ndarray): Hessian of shape [n_features, n_features]
        """
        # Add bias to X
        X = np.insert(self.X, 0, 1, axis=1)
        
        D = []
        for row in range(np.shape(X)[0]):
            D.append(weights[row] *
                     self.logistic_function(np.dot(X[row, :],
                                                   np.transpose(theta))) *
                     (1 -
                      self.logistic_function(np.dot(X[row, :],
                                                    np.transpose(theta)))))
        D = np.diag(D)
        hessian = (np.matmul(np.matmul(X.T, D),
                             X) -
                   np.identity(np.shape(X)[1]) * reg_param)
        return hessian
开发者ID:christopherjenness,项目名称:ML-lib,代码行数:31,代码来源:kernelmethods.py

示例11: MRlogL_sandwichCov

def MRlogL_sandwichCov(dt, Ic, Is):
    """
    Estimates the asymptotic covariance matrix with the sandwich method
    evaluated at the Maximum Likelihood Estimates for Ic, Is
    
    It's Cov_hessian * Cov_OPG^-1 * Cov_hessian
    
    INPUTS:
        dt: list of inter-arrival times [seconds]
        Ic: The maximum likelihood estimate of Ic [1/second]
        Is: 
    OUTPUTS:
        covariance matrix for mle Ic, Is from sandwich method
        [[cov(Ic,Ic), cov(Ic,Is)], [cov(Is,Ic), cov(Is,Is)]]
    """
    h_cov = MRlogL_hessianCov(dt, Ic, Is)
    
    grad_Ic = -1./(1./dt+Is) + 1./(Ic+Is+dt*Is**2.)
    grad_Is = dt**2.*Ic/(1.+dt*Is)**2. - 3.*dt/(1.+dt*Is) + (1.+2.*dt*Is)/(Ic+Is+dt*Is**2.)
    
    #n=1.0*len(dt)
    grad_Ic2 = np.sum(grad_Ic**2.)
    grad_Is2 = np.sum(grad_Is**2.)
    grad_IcIs = np.sum(grad_Ic*grad_Is)
    opg_cov_inv = np.asarray([[grad_Ic2, grad_IcIs], [grad_IcIs, grad_Is2]])
    
    return np.matmul(np.matmul(h_cov, opg_cov_inv),h_cov)
开发者ID:srmeeker,项目名称:DarknessPipeline,代码行数:27,代码来源:binFreeRicianEstimate.py

示例12: _mel_to_linear_matrix

 def _mel_to_linear_matrix(self):
   """Get the inverse mel transformation matrix."""
   m = self._linear_to_mel_matrix()
   m_t = np.transpose(m)
   p = np.matmul(m, m_t)
   d = [1.0 / x if np.abs(x) > 1.0e-8 else x for x in np.sum(p, axis=0)]
   return np.matmul(m_t, np.diag(d))
开发者ID:adarob,项目名称:magenta,代码行数:7,代码来源:specgrams_helper.py

示例13: MultiClass

def MultiClass(W1, W2, X, D):
    alpha = 0.9
    
    N = 5
    for k in range(N):
        x = np.reshape(X[:,:,k], (25, 1))
        d = D[k, :].T
        
        v1 = np.matmul(W1, x)
        y1 = Sigmoid(v1)
        v  = np.matmul(W2, y1)
        y  = Softmax(v)
            
        e     = d - y
        delta = e
        
        e1     = np.matmul(W2.T, delta)
        delta1 = y1*(1-y1) * e1
        
        dW1 = alpha * delta1 * x.T
        W1  = W1 + dW1
        
        dW2 = alpha * delta * y1.T
        W2  = W2 + dW2
        
    return W1, W2
开发者ID:moyixinqing,项目名称:matlab-deep-learning,代码行数:26,代码来源:MultiClass.py

示例14: update_data

def update_data(t):
    """
    Is run each step
    Calculates the seedbank size and plant population in the next step by
        multiplying M, the transition matrix, by X, the data matrix
    """

    global M
    global D
    global M_original
    global D_original

    if STEP_OUTPUT:
        print "[t: {}] Updating data...".format(t)
    # Manual changes in transition matrix and disperion matrix
    if t == 30:
        # Initial inundation of right side. Good graphs with N = 50, T = 75, 
        for cell_i in range(N-26, N):
            M[cell_i,0] = [ss*(1-g*0.001), 0.0]
            M[cell_i,1] = [g*0.001, l*0.001]

    # Migrate Seeds Produced
    X[t + 1] = np.transpose([np.matmul(M[c], X[t, :, c]) for c in range(0, int(N))]) + \
        np.matmul(e * np.transpose([[X[t, 1, c], 0]
                                    for c in range(0, int(N))]), D)
    if STEP_OUTPUT:
        print X[t]
    if t == T - 2:
        print "Data Calculation finished"
开发者ID:neelayjunnarkar,项目名称:CapstoneModelingProject,代码行数:29,代码来源:main.py

示例15: backward

    def backward(self, y, all_x):
        """backward

        :param y:  the label, the actual class of the samples, in one-hot format
        :param all_x: input data and activation from every layer
        """
        
        # [TODO 1.5] Compute delta factor from the output
        delta = all_x[-1] - y
        delta /= y.shape[0]
        # print('last delta shape = ', delta.shape)
        
        # [TODO 1.5] Compute gradient of the loss function with respect to w of softmax layer, use delta from the output        
        grad_last = np.matmul(np.transpose(all_x[-2]), delta)

        grad_list = []
        grad_list.append(grad_last)
        
        for i in range(len(self.layers) - 1)[::-1]:
            prev_layer = self.layers[i+1]
            layer = self.layers[i]
            x = all_x[i]
            # [TODO 1.5] Compute delta_prev factor for previous layer (in backpropagation direction)
            # print('last layer shape = ', prev_layer.w.shape)
            delta_prev = np.matmul(delta, np.transpose(prev_layer.w))
	        # Use delta_prev to compute delta factor for the next layer (in backpropagation direction)
            grad_w, delta = layer.backward(x, delta_prev)
            grad_list.append(grad_w.copy())

        grad_list = grad_list[::-1]
        return grad_list
开发者ID:vuamitom,项目名称:Code-Exercises,代码行数:31,代码来源:dnn_np.py


注:本文中的numpy.matmul函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。